Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 91(6): 3768-3772, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30789702

RESUMEN

Herein we report an effective Ru(NH3)63+/Ru(NH3)62+-mediated photoelectrochemical-chemical-chemical (PECCC) redox cycling amplification (RCA) strategy toward enhanced triple signal amplification for advanced split-type PEC immunoassay application. Specifically, alkaline phosphatase (ALP) label was confined via a sandwich immunorecognition to convert 4-aminophenyl phosphate to the signal reporter 4-aminophenol (AP), which was then directed to interact with Ru(NH3)62+ as a redox mediator and tris (2-carboxyethyl) phosphine (TCEP) as reducing agent in the detection buffer. Upon illumination, the system was then operated upon the oxidation of Ru(NH3)62+ by the photogenerated holes on the Bi2S3/BiVO4 photoelectrode, starting the chain reaction in which the Ru(NH3)62+ was regenerated by Ru(NH3)63+-enabled oxidization of AP to p-quinoneimine, which was simultaneously recovered by TCEP. Exemplified by interleukin-6 (IL-6) as the analyte, the Ru(NH3)63+/Ru(NH3)62+-mediated, AP-involved PECCC RCA coupled with ALP enzymatic amplification could achieve triple signal amplification toward the ultrasensitive PEC IL-6 immunoassay. This protocol can be extended as a general basis for other numerous targets of interest. Besides, we believe this work could offer a new perspective for the further exploration of advanced RCA-based PEC bioanalysis.


Asunto(s)
Inmunoensayo/métodos , Compuestos Organometálicos/química , Procesos Fotoquímicos , Rutenio/química , Electroquímica , Interleucina-6/análisis , Interleucina-6/química , Oxidación-Reducción
2.
Anal Chem ; 91(6): 3795-3799, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30789708

RESUMEN

Liposomal photoelectrochemical (PEC) bioanalysis has recently emerged and exhibited great potential in sensitive biomolecular detection. Exploration of the facile and efficient route for advanced liposomal PEC bioanalysis is highly appealing. In this work, we report the split-type liposomal PEC immunoassay system consisting of sandwich immunorecognition, CdS quantum dots (QDs)-loaded liposomes (QDLL), and the release and subsequent capture of the QDs by a separated TiO2 nanotubes (NTs) electrode. The system elegantly operated upon the protein binding and lysis treatment of CdS QDLL labels within the 96-well plate, and then the CdS QDs-enabled sensitization of TiO2 NTs electrode. Exemplified by cardiac markers troponin I (cTnI) as target, the proposed system achieved efficient activation of TiO2 NTs electrode and thus the signal generation toward the split-type PEC immunoassay. This work features the first use of QDs for liposomal PEC bioanalysis and is expected to inspire more interests in the design and implementation of numerous QDs-involved liposomal PEC bioanalysis.


Asunto(s)
Inmunoensayo/instrumentación , Límite de Detección , Liposomas/química , Nanoporos , Procesos Fotoquímicos , Puntos Cuánticos/química , Semiconductores , Calibración , Electroquímica , Electrodos
3.
Anal Chem ; 91(6): 3800-3804, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30821438

RESUMEN

This work reports the liposome-mediated in situ formation of the AgI/Ag/BiOI Z-scheme heterojunction on foamed nickel electrode for signal-on cathodic photoelectrochemical (PEC) bioanalysis. Specifically, in a proof-of-concept study, Ag nanoparticle-encapsulated liposomes were initially confined via the sandwich immunobinding and then processed to release numerous Ag+ ions, which were then directed to react with the BiOI/Ni electrode, resulting in the in situ generation of a AgI/Ag/BiOI Z-scheme heterojunction on the electrode. The enhanced cathodic signal could be correlated to the target concentration, which thus underlays a novel signal-on cathodic liposomal PEC bioanalysis strategy. Different from previous anodic liposomal PEC bioanalysis, this work features the first cathodic liposomal PEC bioanalysis on the basis of the in situ formation of a Z-scheme heterojunction. More generally, integrated with various biorecognition events, this protocol could serve as a common basis for addressing numerous targets of interest.


Asunto(s)
Bismuto/química , Electroquímica/instrumentación , Yoduros/química , Liposomas/química , Níquel/química , Procesos Fotoquímicos , Compuestos de Plata/química , Plata/química , Electrodos
4.
Biosens Bioelectron ; 136: 128-131, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31078022

RESUMEN

Liposomal photoelectrochemical (PEC) bioanalysis holds enormous potential for future sensitive PEC bioanalysis. With tyrosinase (Tyr) and TiO2 as representative enzyme and electrode, respectively, this communication reports the elegant use of Tyr-loaded liposomes (TLL) toward in situ sensitization of the electrode and thereby the realization of ultrasensitive PEC immunoassay. Specifically, Tyr-encapsulated and detection antibody-functionalized liposomes were first prepared and used as the signal probe. The subsequent sandwich immunobinding could confine the functional liposomes, which were then lysed with surfactant to release the encapsulated Tyr. The free Tyr could then initiate the transformation of tyrosine to dopa, the latter could bind with the undercoordinated Ti sites, forming the stable dopa-Ti charge transfer complex and thus generating enhanced anodic photocurrent under visible light for signaling. Since different semiconductors and enzymes may be adapted into this format, this work is expected to stimulate more interest in the enzyme-induced activation of semiconductors for advanced liposomal PEC bioanalysis.


Asunto(s)
Inmunoensayo/métodos , Liposomas , Monofenol Monooxigenasa/química , Semiconductores , Dihidroxifenilalanina/metabolismo , Luz , Titanio , Tirosina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA