Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cytokine ; 176: 156507, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38244240

RESUMEN

Endothelial cell injury and mitochondrial dysfunction are crucial events during coronary artery disease (CAD). Suppressor of cytokine signaling-1 (SOCS1) is a negative mediator for inflammation, but there are few reports regarding histone acetylation of SOCS1 in CAD. The aim of the current study is to examine the impact of SOCS1 in CAD patients and human umbilical vein endothelial cells (HUVECs). We enrolled patients with CAD and healthy volunteers. HUVECs treated with ox-LDL were used as in vitro model. This study showed that SOCS1 expression was decreased in patients with CAD and ox-LDL-stimulated HUVECs. Overexpressing SOCS1 ameliorated endothelial cell injury and mitochondrial dysfunction induced by ox-LDL in vitro. Moreover, EP300 promoted SOCS1 transcription through increasing the acetylation of SOCS1 and recruiting H3K27ac to the SOCS1 gene promoter in HUVECs induced by ox-LDL. Additionally, SOCS1 repressed JAK/STAT cascade in ox-LDL-stimulated HUVECs. Silencing of EP300 reversed endothelial cell injury and mitochondrial dysfunction ameliorated by overexpression of SOCS1 in ox-LDL-induced HUVECs. In summary, SOCS1 alleviated endothelial injury and mitochondrial dysfunction via enhancing H3K27ac acetylation by recruiting EP300 to promoter region and inhibiting JAK/STAT pathway. These results contribute to discover underlying diagnostic biomarkers and therapeutic targets for CAD.


Asunto(s)
Enfermedad de la Arteria Coronaria , Enfermedades Mitocondriales , Humanos , Histonas , Quinasas Janus , Enfermedad de la Arteria Coronaria/genética , Acetilación , Transducción de Señal , Factores de Transcripción STAT , Proteínas Supresoras de la Señalización de Citocinas , Células Endoteliales de la Vena Umbilical Humana , Regiones Promotoras Genéticas/genética , Proteína 1 Supresora de la Señalización de Citocinas/genética , Proteína p300 Asociada a E1A
2.
Fish Shellfish Immunol ; 144: 109247, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38006905

RESUMEN

Mandarin fish (Siniperca chuatsi) is a valuable freshwater fish species widely cultured in China. Its aquaculture production is challenged by bacterial septicaemia, which is one of the most common bacterial diseases. Antimicrobial peptides (AMPs) play a critical role in the innate immune system of fish, exhibiting defensive and inhibitory effects against a wide range of pathogens. This study aimed to identify the antimicrobial peptide genes in mandarin fish using transcriptomes data obtained from 17 tissue in our laboratory. Through nucleotide sequence alignment and protein structural domain analysis, 15 antimicrobial peptide genes (moronecidin, pleurocidin, lysozyme g, thymosin ß12, hepcidin, leap 2, ß-defensin, galectin 8, galectin 9, apoB, apoD, apoE, apoF, apoM, and nk-lysin) were identified, of which 9 antimicrobial peptide genes were identified for the first time. In addition, 15 AMPs were subjected to sequence characterization and protein structure analysis. After injection with Aeromonas hydrophila, the number of red blood cells, hemoglobin concentration, and platelet counts in mandarin fish showed a decreasing trend, indicating partial hemolysis. The expression change patterns of 15 AMP genes in the intestine after A. hydrophila infection were examined by using qRT-PCR. The results revealed, marked up-regulation (approximately 116.04) of the hepcidin gene, down-regulation of the piscidin family genes expression. Moreover, most AMP genes were responded in the early stages after A. hydrophila challenge. This study provides fundamental information for investigating the role of the different antimicrobial peptide genes in mandarin fish in defense against A. hydrophila infection.


Asunto(s)
Enfermedades de los Peces , Perciformes , Animales , Transcriptoma , Hepcidinas/genética , Hepcidinas/metabolismo , Aeromonas hydrophila/genética , Péptidos Antimicrobianos , Peces/genética , Proteínas de Peces/química , Galectinas/genética
3.
Environ Sci Technol ; 58(35): 15381-15394, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39136294

RESUMEN

China is confronting the dual challenges of air pollution and climate change, mandating the co-control of air pollutants and CO2 emissions from their shared sources. Here we identify key sources for co-control that prioritize the mitigation of PM2.5-related health burdens, given the homogeneous impacts of CO2 emissions from various sources. By applying an integrated analysis framework that consists of a detailed emission inventory, a chemical transport model, a multisource fused dataset, and epidemiological concentration-response functions, we systematically evaluate the contribution of emissions from 390 sources (30 provinces and 13 socioeconomic sectors) to PM2.5-related health impacts and CO2 emissions, as well as the marginal health benefits of CO2 abatement across China. The estimated source-specific contributions exhibit substantial disparities, with the marginal benefits varying by 3 orders of magnitude. The rural residential, transportation, metal, and power and heating sectors emerge as pivotal sources for co-control, with regard to their relatively large marginal benefits or the sectoral total benefits. In addition, populous and heavily industrialized provinces such as Shandong and Henan are identified as the key regions for co-control. Our study highlights the significance of incorporating health benefits into formulating air pollution and carbon co-control strategies for improving the overall social welfare.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Dióxido de Carbono , China , Dióxido de Carbono/análisis , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Cambio Climático , Monitoreo del Ambiente
4.
J Environ Manage ; 370: 122509, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39293113

RESUMEN

Promoting good health and ensuring responsible production and consumption are essential components of the Sustainable Development Goals (SDGs) established by of the United Nations, as well as the goals of beautiful China. While the health impacts of air pollution have garnered significant attention, there remains a paucity of studies comparing the disparities in responsibility arising from production versus consumption. This paper integrates the Weather Research and Forecasting - Comprehensive Air Quality Model with Extensions (WRF-CAMx) model, the multiregional input‒output (MRIO) model, and the global exposure mortality model (GEMM) to assess the extent of PM2.5-related premature deaths caused by production and consumption activities in 30 Chinese provinces. The findings reveal a spatial mismatch in health burdens between production and consumption. Considering pollutant emissions and their transfer only through the supply chain leads to the finding that the net outflow of emissions from producers is mainly located in most of the northern provinces of China. However, when atmospheric transport and health impacts are included, the producing provinces are mainly located in central China, while the consuming provinces are located in the southeastern coastal and remote western and northern regions. Additionally, the long-range impact of consumption provinces with respect to the health burden is more than twice as large as that of production provinces, and its potential impact on the health burden cannot be ignored. From a sectoral perspective, production emissions from the non-electricity industry and services sectors contribute to 60% of the health burden, while their consumption emissions contribute to over 80% of the health burden. Furthermore, consumption activities in the non-electricity industry and services sectors significantly influence production emissions in the transport, agriculture, and electricity sectors. The geographical separation of consumption and production regions facilitated by trade is a critical yet often overlooked aspect in current regional air quality planning in China. A more comprehensive analysis of life-cycle emissions driven by final consumption could yield greater reductions compared to direct production reductions.

5.
New Phytol ; 238(5): 2016-2032, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36792969

RESUMEN

Quercus dentata Thunb., a dominant forest tree species in northern China, has significant ecological and ornamental value due to its adaptability and beautiful autumn coloration, with color changes from green to yellow into red resulting from the autumnal shifts in leaf pigmentation. However, the key genes and molecular regulatory mechanisms for leaf color transition remain to be investigated. First, we presented a high-quality chromosome-scale assembly for Q. dentata. This 893.54 Mb sized genome (contig N50 = 4.21 Mb, scaffold N50 = 75.55 Mb; 2n = 24) harbors 31 584 protein-coding genes. Second, our metabolome analyses uncovered pelargonidin-3-O-glucoside, cyanidin-3-O-arabinoside, and cyanidin-3-O-glucoside as the main pigments involved in leaf color transition. Third, gene co-expression further identified the MYB-bHLH-WD40 (MBW) transcription activation complex as central to anthocyanin biosynthesis regulation. Notably, transcription factor (TF) QdNAC (QD08G038820) was highly co-expressed with this MBW complex and may regulate anthocyanin accumulation and chlorophyll degradation during leaf senescence through direct interaction with another TF, QdMYB (QD01G020890), as revealed by our further protein-protein and DNA-protein interaction assays. Our high-quality genome assembly, metabolome, and transcriptome resources further enrich Quercus genomics and will facilitate upcoming exploration of ornamental values and environmental adaptability in this important genus.


Asunto(s)
Antocianinas , Quercus , Antocianinas/metabolismo , Quercus/genética , Quercus/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , Transcriptoma/genética , Factores de Transcripción/metabolismo , Metaboloma , Pigmentación/genética , Cromosomas , Glucósidos , Color
6.
Environ Sci Technol ; 57(12): 4720-4731, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36917695

RESUMEN

The emissions from various pollution sources were not proportional to their contributions to ambient PM2.5 concentrations and associated health burdens. That means even with the same total abatement targets, different abatement allocation strategies across emission sources can have distinct health benefits. Insufficient knowledge of various sources' contributions to health burdens in China, the country suffering substantial PM2.5-related deaths, hindered the government from seeking optimized abatement allocation strategies. In this context, we separated the contributions of 155 emission sources (31 provinces × 5 sectors) to PM2.5-related mortality across China in 2017 by coupling the Comprehensive Air Quality Model with Extensions (CAMx), Weather Research and Forecasting model (WRF), and health impact assessment model. We further identified the priority-control emission sources and quantified interprovincial ecological compensation volumes to alleviate inequality induced by emission allocation strategies. Results showed that PM2.5 pollution caused 899,443 excess deaths and around 127 billion USD costs in 2017. Approximately half of the deaths and costs were attributable to emissions from sources outside the boundary of the regions where the deaths occurred. Twenty-five out of 155 emission sources that contributed to the top 60% mortality burdens and had high marginal abatement efficiencies in China shall be the priority-control emission sources. A 1 µg/m3 decrease of PM2.5 concentration in regions where these key emission sources occur shall be compensated by 76-153 million USD in their receptor regions. Our study sheds light on the sources' contributions to mortality burdens and costs and provides scientific evidence for optimizing the emission allocation and compensation strategies in China. It also has wide implications for other countries suffering similar problems.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Monitoreo del Ambiente/métodos , Contaminación del Aire/análisis , China
7.
Environ Sci Technol ; 57(50): 20992-21004, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38055305

RESUMEN

Co-controlling the emissions of air pollutants and CO2 from automobiles is crucial for addressing the intertwined challenges of air pollution and climate change in China. Here, we analyze the synergetic characteristics of air pollutant and CO2 emissions from China's on-road transportation and identify the co-drivers influencing these trends. Using detailed emission inventories and employing index decomposition analysis, we found that despite notable progress in pollution control, minimizing on-road CO2 emissions remains a formidable task. Over 2010-2020, the estimated sectoral emissions of VOCs, NOx, PM2.5, and CO declined by 49.9%, 25.9%, 75.2%, and 63.5%, respectively, while CO2 emissions increased by 46.1%. Light-duty passenger vehicles and heavy-duty trucks have been identified as the primary contributors to carbon-pollution co-emissions, highlighting the need for tailored policies. The driver analysis indicates that socioeconomic changes are primary drivers of emission growth, while policy controls, particularly advances in emission efficiency, can facilitate co-reductions. Regional disparities emphasize the need for policy refinement, including reducing dependency on fuel vehicles in the passenger subsector and prioritizing co-reduction strategies in high-emission provinces in the freight subsector. Overall, our study confirms the effectiveness of China's on-road control policies and provides valuable insights for future policy makers in China and other similarly positioned developing countries.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Dióxido de Carbono/análisis , Emisiones de Vehículos/análisis , Contaminación del Aire/análisis , China , Transportes , Monitoreo del Ambiente
8.
Environ Sci Technol ; 57(1): 109-117, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36577015

RESUMEN

Increasing surface ozone (O3) concentrations has emerged as a key air pollution problem in many urban regions worldwide in the last decade. A longstanding major issue in tackling ozone pollution is the identification of the O3 formation regime and its sensitivity to precursor emissions. In this work, we propose a new transformed empirical kinetic modeling approach (EKMA) to diagnose the O3 formation regime using regulatory O3 and NO2 observation datasets, which are easily accessible. We demonstrate that mapping of monitored O3 and NO2 data on the modeled regional O3-NO2 relationship diagram can illustrate the ozone formation regime and historical evolution of O3 precursors of the region. By applying this new approach, we show that for most urban regions of China, the O3 formation is currently associated with a volatile organic compound (VOC)-limited regime, which is located within the zone of daytime-produced O3 (DPO3) to an 8h-NO2 concentration ratio below 8.3 ([DPO3]/[8h-NO2] ≤ 8.3). The ozone production and controlling effects of VOCs and NOx in different cities of China were compared according to their historical O3-NO2 evolution routes. The approach developed herein may have broad application potential for evaluating the efficiency of precursor controls and further mitigating O3 pollution, in particular, for regions where comprehensive photochemical studies are unavailable.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Compuestos Orgánicos Volátiles , Ozono/análisis , Contaminantes Atmosféricos/análisis , Dióxido de Nitrógeno , Monitoreo del Ambiente , China , Compuestos Orgánicos Volátiles/análisis
9.
Environ Sci Technol ; 57(32): 11852-11862, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37526712

RESUMEN

Energy transition is an important way to control air pollution, but it may conflict with the economic goal of alleviating regional inequality due to its inherently different cost burdens. As one of the effective measures of energy transition, this paper takes small coal-fired boiler (SCB) upgrading as an example to explore the regional mismatch between upgrading costs and health benefits. Here, we construct a boiler-level inventory of SCB upgrades for the North China Plain (NCP) during 2013-2017 and propose an integrated modeling framework to quantify the spatial contribution of economic costs and health benefits associated with SCB upgrading. We find that although the total health benefits could offset the total costs for the entire region, the developed municipalities (Beijing and Tianjin) are likely to gain more health benefits from less-developed neighboring provinces at lower costs. These developed municipalities contribute only 14% to the total health benefits but gain 21% of the benefits within their territories, 56% of which come from neighboring provinces. Their benefits are approximately 5.6 times their costs, which is much higher than the 1.5 benefit-cost ratio in neighboring provinces. Our findings may be useful in shaping more equitable and sound environmental policies in China or other regions of the world with serious coal-related air pollution.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminación del Aire/análisis , Beijing , China , Fenómenos Físicos , Carbón Mineral , Contaminantes Atmosféricos/análisis
10.
J Environ Sci (China) ; 123: 510-521, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36522010

RESUMEN

Air pollution control policies in China have been experiencing profound changes, highlighting a strategic transformation from total pollutant emission control to air quality improvement, along with the shifting targets starting from acid rain and NOx emissions to PM2.5 pollution, and then the emerging O3 challenges. The marvelous achievements have been made with the dramatic decrease of SO2 emission and fundamental improvement of PM2.5 concentration. Despite these achievements, China has proposed Beautiful China target through 2035 and the goal of 2030 carbon peak and 2060 carbon neutrality, which impose stricter requirements on air quality and synergistic mitigation with Greenhouse Gas (GHG) emissions. Against this background, an integrated multi-objective and multi-benefit roadmap is required to provide decision support for China's long-term air quality improvement strategy. This paper systematically reviews the technical system for developing the air quality improvement roadmap, which was integrated from the research output of China's National Key R&D Program for Research on Atmospheric Pollution Factors and Control Technologies (hereafter Special NKP), covering mid- and long-term air quality target setting techniques, quantitative analysis techniques for emission reduction targets corresponding to air quality targets, and pathway optimization techniques for realizing reduction targets. The experience and lessons derived from the reviews have implications for the reformation of China's air quality improvement roadmap in facing challenges of synergistic mitigation of PM2.5 and O3, and the coupling with climate change mitigation.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Desarrollo Industrial , Mejoramiento de la Calidad , Contaminación del Aire/prevención & control , Contaminación del Aire/análisis , Carbono/análisis , China
11.
Environ Sci Technol ; 56(13): 9291-9301, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35714369

RESUMEN

China will attempt to achieve its simultaneous goals in 2060, whereby carbon neutrality will be accomplished and the PM2.5 (fine particulate matter) level is expected to remain below 10 µg/m3. Identifying interaction patterns between air cleaning and climate action represents an important step to obtain cobenefits. Here, we used a random sampling strategy through the combination of chemical transport modeling and machine learning approach to capture the interaction effects from two perspectives in which the driving forces of both climate action and air cleaning measures were compared. We revealed that climate action where carbon emissions were decreased to 1.9 Bt (billion tons) could lead to a PM2.5 level of 12.4 µg/m3 (95% CI (confidence interval): 10.2-14.6 µg/m3) in 2060, while air cleaning could force carbon emissions to reach 1.93 Bt (95% CI: 0.79-3.19 Bt) to achieve net carbon neutrality based on the potential carbon sinks in 2060. Additional controls targeting primary PM2.5, ammonia, and volatile organic compounds were required as supplements to overcome the partial lack of climate action. Our study provides novel insights into the cobenefits of air-quality improvement and climate change mitigation, indicating that the effect of air cleaning on the simultaneous goals might have been underestimated before.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Contaminación del Aire/prevención & control , Carbono , China , Monitoreo del Ambiente , Aprendizaje Automático , Material Particulado/análisis
12.
Environ Sci Technol ; 56(12): 7647-7656, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35587991

RESUMEN

China is confronting the challenge of opposite health benefits (OHBs) during ambient ozone (O3) mitigation because the same reduction scheme might yield opposite impacts on O3 levels and associated public health across different regions. Here, we used a combination of chemical transport modeling, health benefit assessments, and machine learning to capture such OHBs and optimize O3 mitigation pathways based on 121 control scenarios. We revealed that, for the China mainland, Beijing-Tianjin-Hebei and its surroundings ("2 + 26" cities), Yangtze River Delta, and Pearl River Delta, there could be at most 2897, 920, 1247, and 896 additional O3-related deaths in urban areas, respectively, accompanying 21,512, 3442, 5614, and 642 avoided O3-related deaths in rural areas, respectively, at the same control stage. Additionally, potential disbenefits during O3 mitigation were "pro-wealthy", that is, residents in developed regions are more likely to afford additional health risks. In order to avoid OHBs during O3 abatement, we proposed a two-phase control strategy, whereby the reduction ratio of NOX (nitrogen oxide) to VOCs (volatile organic compounds) was adjusted according to health benefit distribution patterns. Our study provided novel insights into China's O3 attainment and references for other countries facing the dual challenges of environmental pollution and associated inequality issues.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , China , Monitoreo del Ambiente , Contaminación Ambiental , Óxido Nítrico/análisis , Ozono/química , Compuestos Orgánicos Volátiles/química
13.
World J Surg Oncol ; 20(1): 9, 2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-34996483

RESUMEN

BACKGROUND: The safety of gasless endoscopic trans-axillary thyroid surgery is still undetermined. METHODS: Clinical findings and postoperative complications of patients who had undergone trans-axillary thyroid surgery due to thyroid cancer and thyroid nodules were retrospectively studied. The sensory change and paralysis results from this technique and patients' satisfaction with the cosmesis were also studied. RESULTS: Fifty-one patients (49 females and 2 males) received operations by gasless, endoscopic trans-axillary approaches with one patient whose operation was converted to open surgery because of internal jugular vein injury. Only two patients developed temporary vocal cord paralysis and no patients developed other severe complications. The alleviation of the discomfort in the anterior neck area and sternocleidomastoid, and the cosmetic effect of gasless endoscopic trans-axillary thyroid surgery were acceptable. No evidence of recurrence was found during the follow-up period. CONCLUSIONS: Gasless, endoscopic trans-axillary thyroid surgery is a feasible procedure with acceptable safety and better cosmetic results in strictly selected patients.


Asunto(s)
Neoplasias de la Tiroides , Tiroidectomía , Endoscopía , Femenino , Humanos , Masculino , Estudios Retrospectivos , Neoplasias de la Tiroides/cirugía , Tiroidectomía/efectos adversos
14.
J Environ Manage ; 249: 109377, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31437705

RESUMEN

The "Joint Prevention and Control of Regional Air Pollution in China" has been put forward to solve serious regional air pollution. However, there is no geographical division covering the whole country that could reveal the similarities and differences among regions to support implementing this policy. This paper applied an air quality model and a multiregional input-output model to analyze the impacts and patterns of atmospheric transmission and trade transfer of regional air pollution, then compared the differences among typical provinces in the northern, central and southern regions. The social network analysis method was used to analyze the interacting pattern of regional atmospheric transmission and trade transfer, and 31 provinces in mainland China were divided into 5 clusters to reveal the interprovincial relationship of atmospheric transmission; then, the 31 provinces were divided into 3 clusters to reveal the interprovincial relationship of trade transfer. Based on these results, the provincial geographical division of "Nine Atmospheric Environmental Transmission Zones" covering mainland China was carried out. In addition, the key regions linking atmospheric transmission and trade transfer were also found. For example, Inner Mongolia is a typical key linkage region. From an atmospheric transmission perspective, it is linked to the northeast area. However, from a trade transfer perspective, it has a close relationship with the southern provinces. The linkage among provinces provides support for the interregional interaction mechanism of air pollution and the formulation of "Joint Prevention and Control of Regional Air Pollution in China".


Asunto(s)
Contaminación del Aire , China , Planificación de Ciudades , Contaminación Ambiental , Geografía
15.
Environ Sci Technol ; 48(12): 7085-93, 2014 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-24840164

RESUMEN

A high spatial resolution carbon dioxide (CO2) emission map of China is proving to be essential for China's carbon cycle research and carbon reduction strategies given the current low quality of CO2 emission data and the inconsistencies in data quality between different regions. Ten km resolution CO2 emission gridded data has been built up for China based on point emission sources and other supporting data. The predominance of emissions from industrial point sources (84% of total emissions) in China supports the use of bottom-up methodology. The resultant emission map is informative and proved to be more spatially accurate than the EDGAR data. Spatial distribution of CO2 emissions in China is highly unbalanced and has positive spatial autocorrelation. The spatial pattern is mainly influenced by key cities and key regions, i.e., the Jing-Jin-Ji region, the Yangtze River delta region, and the Pearl River delta region. The emission map indicated that the supervision of 1% of total land could enable the management of about 70% of emissions in China.


Asunto(s)
Contaminantes Atmosféricos/análisis , Dióxido de Carbono/análisis , Fuentes Generadoras de Energía , China , Ciudades , Clima Desértico , Geografía , Industrias
16.
Plants (Basel) ; 13(8)2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38674560

RESUMEN

Lotus japonicus, is an important perennial model legume, has been widely used for studying biological processes such as symbiotic nitrogen fixation, proanthocyanidin (PA) biosynthesis, and abiotic stress response. High-quality L. japonicus genomes have been reported recently; however, the genetic basis of genes associated with specific characters including proanthocyanidin distribution in most tissues and tolerance to stress has not been systematically explored yet. Here, based on our previous high-quality L. japonicus genome assembly and annotation, we compared the L. japonicus MG-20 genome with those of other legume species. We revealed the expansive and specific gene families enriched in secondary metabolite biosynthesis and the detection of external stimuli. We suggested that increased copy numbers and transcription of PA-related genes contribute to PA accumulation in the stem, petiole, flower, pod, and seed coat of L. japonicus. Meanwhile, According to shared and unique transcription factors responding to five abiotic stresses, we revealed that MYB and AP2/ERF play more crucial roles in abiotic stresses. Our study provides new insights into the key agricultural traits of L. japonicus including PA biosynthesis and response to abiotic stress. This may provide valuable gene resources for legume forage abiotic stress resistance and nutrient improvement.

17.
J Laparoendosc Adv Surg Tech A ; 34(9): 851-854, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39229766

RESUMEN

Background: Laparoscopic common bile duct exploration (LCBDE) proves a safe and effective treatment for choledochal stones. After LCBDE, preferred choledochal closure is favored for short- and long-term outcomes compared with t-tube drainage. However, there are no relevant studies on the technique of layered closure of the common bile duct with double-needle bidirectional barbed suture at home and abroad. Materials and Methods: A retrospective study of 37 patients who underwent laparoscopic choledochotomy from January 2021 to October 2023 in our hospital was performed. A continuous layered one-stage suture using two-needle bidirectional barb wire. The primary outcomes were stone clearance, operative time, blood loss, and complications. Secondary outcomes were complications, length of hospitalization, and time to drain removal. Results: During the study period, laparoscopic surgery was successful in all cases, and the initial stones were removed without complications. Conclusion: The treatment of choledocholithiasis with continuous layered one-stage suture with double-needle bidirectional barbed wire after LCBDE is a new convenient and effective treatment in selected patients.


Asunto(s)
Coledocolitiasis , Conducto Colédoco , Laparoscopía , Técnicas de Sutura , Humanos , Estudios Retrospectivos , Masculino , Femenino , Técnicas de Sutura/instrumentación , Conducto Colédoco/cirugía , Persona de Mediana Edad , Laparoscopía/métodos , Laparoscopía/instrumentación , Anciano , Coledocolitiasis/cirugía , Adulto , Tempo Operativo , Agujas , Resultado del Tratamiento
18.
Environ Sci Ecotechnol ; 20: 100367, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39221075

RESUMEN

Assessing the iron and steel industry's (ISI) impact on climate change and environmental health is vital, particularly in China, where this sector significantly influences air quality and CO2 emissions. There is a lack of comprehensive analyses that consider the environmental and health burdens of manufacturing processes for ISI enterprises. Here, we present an integrated emission inventory that encompasses air pollutants and CO2 emissions from 811 ISI enterprises and five key manufacturing processes in 2020. Our analysis shows that sintering is the primary source of air pollution in the ISI. It contributes 71% of SO2, 73% of NO x , and 54% of PM2.5 emissions. On the other hand, 81% of total CO2 emissions come from blast furnaces. Significantly, the contributions of ISI have resulted in an increase of 3.6 µg m-3 in national population-weighted PM2.5 concentration, causing approximately 59,035 premature deaths in 2020. Emissions from Hebei, Jiangsu, Shandong, Shanxi, and Inner Mongolia provinces contributed to 48% of PM2.5-related deaths in China. Moreover, the transportation of air pollutants across provincial borders highlights a concerning trend of environmental health inequality. Based on the research findings, it is crucial for ISI manufacturers to prioritize the removal of outdated production capacities and adopt energy-efficient and advanced techniques, along with ultra-low emission technologies. This is particularly important for those manufacturers with substantial environmental footprints. These transformative actions are essential in mitigating the environmental and health impacts in the affected regions.

19.
Environ Sci Ecotechnol ; 22: 100448, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39104554

RESUMEN

Due to the transboundary nature of air pollutants, a province's efforts to improve air quality can reduce PM2.5 concentration in the surrounding area. The inter-provincial PM2.5 pollution transport could bring great challenges to related environmental management work, such as financial fund allocation and subsidy policy formulation. Herein, we examined the transport characteristics of PM2.5 pollution across provinces in 2013 and 2020 via chemical transport modeling and then monetized inter-provincial contributions of PM2.5 improvement based on pollutant emission control costs. We found that approximately 60% of the PM2.5 pollution was from local sources, while the remaining 40% originated from outside provinces. Furthermore, about 1011 billion RMB of provincial air pollutant abatement costs contributed to the PM2.5 concentration decline in other provinces during 2013-2020, accounting for 41.2% of the total abatement costs. Provinces with lower unit improvement costs for PM2.5, such as Jiangsu, Hebei, and Shandong, were major contributors, while Guangdong, Guangxi, and Fujian, bearing higher unit costs, were among the main beneficiaries. Our study identifies provinces that contribute to air quality improvement in other provinces, have high economic efficiency, and provide a quantitative framework for determining inter-provincial compensations. This study also reveals the uneven distribution of pollution abatement costs (PM2.5 improvement/abatement costs) due to transboundary PM2.5 transport, calling for adopting inter-provincial economic compensation policies. Such mechanisms ensure equitable cost-sharing and effective regional air quality management.

20.
Environ Int ; 191: 108958, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39153386

RESUMEN

Regional budget assessments of methane (CH4) are critical for future climate and environmental management. CH4 emissions from rice cultivation (CH4-rice) constitute one of the most significant sources. However, previous studies mainly focus on historical emission estimates and lack consideration of future changes in CH4-rice under climate change or anthropogenic policy intervention, which hampers our understanding of long-term trends and the implementation of targeted emission reduction efforts. This study investigates the spatiotemporal variations of CH4-rice over the past two decades, using an integrated method to identify the major drivers and predict future emissions under climate change scenarios and policy perspectives. Results indicate that the CH4-rice emissions in China ranged between 6.21 and 6.57 Tg yr-1 over the past two decades, with a spatial distribution characterized by decreases in the south and increases in the north, associated with economic development, dietary shifts, technological advancements, and climate change. Factors such as the rate of straw added (RSA), fertilization, soil texture, temperature, and precipitation significantly influence CH4 emissions per unit rice production (CH4-urp), with RSA identified as the most significant tillage management factor, explaining 32 % of the variance. Lowering RSA to 8 % is beneficial for reducing CH4-urp. Scenario analysis indicates that under policies focusing on production or demand, CH4-rice is expected to increase by 0.3 % to 5.6 %, while adjusting RSA can reduce CH4-rice by 9.4 % to 10.0 %. Structural adjustments and regional cooperation serve as beneficial starting points for controlling and reducing CH4-rice in China, while optimizing industrial layouts contributes to regional development and CH4-rice control. Implementing policies related to maintaining field and crop yields can achieve a balance between rice supply and demand ahead of schedule. Dynamic adjustment of rice cultivation based on supply-demand balance can effectively reduce CH4-rice from excess rice production. By 2060, the reduction effect could reach 8.95 %-12.01 %. Introducing policy-driven tillage management measures as reference indicators facilitates the reduction of CH4-rice.


Asunto(s)
Agricultura , Cambio Climático , Metano , Oryza , Oryza/crecimiento & desarrollo , China , Metano/análisis , Agricultura/métodos , Monitoreo del Ambiente , Contaminantes Atmosféricos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA