Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Opt Express ; 31(18): 29515-29522, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37710750

RESUMEN

An all-dielectric photonic metastructure is investigated for application as a quantum algorithm emulator (QAE) in the terahertz frequency regime; specifically, we show implementation of the Deustsh-Josza algorithm. The design for the QAE consists of a gradient-index (GRIN) lens as the Fourier transform subblock and patterned silicon as the oracle subblock. First, we detail optimization of the GRIN lens through numerical analysis. Then, we employed inverse design through a machine learning approach to further optimize the structural geometry. Through this optimization, we enhance the interaction of the incident light with the metamaterial via spectral improvements of the outgoing wave.

2.
Nano Lett ; 22(24): 9788-9794, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36469734

RESUMEN

A system of N two-level atoms cooperatively interacting with a photonic field can be described as a single giant atom coupled to the field with interaction strength ∝N. This enhancement, known as Dicke cooperativity in quantum optics, has recently become an indispensable element in quantum information technology. Here, we extend the coupling beyond the standard light-matter interaction paradigm, enhancing Dicke cooperativity in a terahertz metasurface with N meta-atoms. The cooperative enhancement is manifested through the hybridization of the localized surface plasmon resonance in individual meta-atoms and surface lattice resonance due to the periodic array. Furthermore, through engineering of the capacitive split-gap in the meta-atoms, we were able to enhance the coupling rate into the ultrastrong coupling regime by a factor of N. Our strategy can serve as a new platform for demonstrating effective control of fermionic systems by weak pumping, superradiant emission, and ultrasensitive sensing of molecules.

3.
Opt Lett ; 40(13): 3197-200, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-26125401

RESUMEN

Quasi-monodisperse dielectric particles organized in a periodic hexagonal network on an aluminum surface are exploited numerically and experimentally as a single-layered near-perfect absorber in the terahertz regime. Of particular interest are titanium dioxide (TiO(2)) microspheres because of their large dielectric permittivity and isotropic shape leading to Mie resonances with insensitive polarization. Absorption higher than 80% at normal incidence covering two distinct ranges of frequencies is demonstrated experimentally. Furthermore, the performance of the metamaterial absorber is kept over a wide range of incident angles.

4.
Opt Lett ; 38(23): 4988-90, 2013 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-24281490

RESUMEN

Standard optical lithography relying on clean room and microelectronic facilities is used to fabricate a thin-flexible metamaterial absorber, designed to operate at submillimeter wavelengths over the 0.1-1 THz frequency band. Large terahertz absorption has been demonstrated numerically and through experimental measurements with a maximum level of about 80%. We put emphasis in this present work on the use of single-sized "meta-cells" to achieve multiple absorption peaks. Furthermore, the use of a thin-flexible dielectric spacer makes it promising for stealth technology applications in order to disguise objects and make them less visible to radar and other detection methods.

5.
Materials (Basel) ; 11(9)2018 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-30205609

RESUMEN

In this article, a single layer co-polarization broadband radar absorber is presented. Under normal incidence, it achieves at least 90% of absorption from 5.6 GHz to 9.1 GHz for both Transverse Electric (TE) and Transverse Magnetic (TM) polarizations. Our contribution and the challenge of this work is to achieve broadband absorption using a very thin single layer dielectric and it is achieved by rotating the resonating element by 45 ∘ . An original optimized Underlined U shape has been developed for the resonating element which provides a broadband co-polarization absorption. The structure is 12.7 times thinner than the wavelength at the center frequency. To understand the absorption mechanism, the transmission line model of an absorber and the three near unity absorption peaks at 5.87 GHz, 7.16 GHz and 8.82 GHz have been used to study the electric and magnetic fields. The physical insight of how the three near unity absorption peaks are achieved has also been discussed. After fabricating the structure, the measurements were found to be in good agreement with the simulation results. Furthermore, with the proposed original UUSR resonating element, the operational bandwidth to thickness ratio of 6.43 is obtained making the proposed UUSR very competitive.

6.
Sci Rep ; 8(1): 382, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29321623

RESUMEN

A thin broadband dual-layer radar absorber based on periodic Frequency Selective Surfaces (FSS) to tackle Electromagnetic Interference (EMI) in radomes is presented in this article. The proposed structure consists of periodically arranged metallic patterns printed on two dielectric substrates separated by an optimized air gap. Under normal incidence, the proposed structure exhibits at least 89.7% of absorption in the whole band of 4.8 GHz to 11.1 GHz for both Transverse Electric (TE) and Magnetic (TM) polarizations. For oblique incidences, a very slight decrease in the bandwidth is observed in the upper frequency band until 30° and the absorption remains very interesting for higher incidences. The structure is λ/7.2 (λ is the wavelength in free space) thin compared to the center frequency (8.2 GHz). In addition, parametric studies have demonstrated that at least 90% of absorption can be produced with our structure by adjusting the thicknesses of the dielectric substrates. Another issue that is presented and discussed in this paper is a new approach for evaluating the performance of absorbers. In fact, studies show that the absorber can compete with other recent broadband absorbers. After fabricating the structure, the measurements were found to be in good agreement with the simulation results.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA