Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Chemistry ; 30(27): e202304335, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38418426

RESUMEN

Immobilized Pd-catalyzed Suzuki-Miyaura coupling under continuous-flow conditions using a packed-bed reactor, representing an efficient, automated, practical, and safe technology compared to conventional batch-type reactions. The core objective of this study is the development of an active and durable catalyst. In contrast to supported Pd nanoparticles, the attachment of Pd complexes onto solid supports through well-defined coordination sites is considered a favorable approach for preparing highly dispersed and stabilized Pd species. These species can be directly employed in various flow reactions without the need for pre-treatment. This concept paper explores recent achievements involving the application of immobilized Pd complexes as precatalysts for continuous-flow Suzuki-Miyaura coupling. Our focus is to elucidate the significance of the designed catalyst structures in relation to their catalytic performance under flow conditions. Additionally, we highlight various reaction systems and catalyst packing methods, emphasizing their crucial roles in establishing a practical synthesis process.

2.
Chemistry ; 29(34): e202300494, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37204093

RESUMEN

Given that heterogeneous palladium-catalyzed C-C bond formation reactions under continuous-flow conditions are well suited for the efficient and safe production of pharmaceuticals and functional materials, the development of active and durable catalysts for this purpose is a matter of high practical significance. Here, a previously established molecular convolution methodology was used to synthesize catalysts for Suzuki-Miyaura coupling under flow conditions by blending convoluted polymeric palladium catalysts (prepared from copolymers of 4-vinylpyridine and 4-tert-butylstyrene) and crosslinked polymeric auxiliary materials (prepared from copolymers of divinylbenzene and 4-tert-butylstyrene). The optimal catalyst exhibited high performance and durability and allowed numerous biaryl products such as liquid-crystalline materials, organic electroluminescent materials, and pharmaceuticals to be continuously synthesized with turnover frequencies of up to 238 h-1 . In a demonstration of practical utility, the developed catalytic system was used for the continuous synthesis of two pharmaceuticals (felbinac and fenbufen) in water as the sole solvent.

3.
J Chem Inf Model ; 63(18): 5764-5772, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37655841

RESUMEN

Highly active catalysts are required in numerous industrial fields; therefore, to minimize costs and development time, catalyst design using machine learning has attracted significant attention. This study focused on a reaction system where two types of cross-coupling reactions, namely, Buchwald-Hartwig type cross-coupling (BHCC) and Suzuki-Miyaura type cross-coupling (SMCC) reactions, occur simultaneously. Constructing a machine-learning model that considers all experimental conditions is essential to accurately predict the product yield for both the BHCC and the SMCC reactions. The objective of this study was to establish explanatory variables x that considered all experimental conditions within the reaction system involving simultaneous cross-couplings and to design catalysts that achieve the target yield and the development of novel reactions. To accomplish this, Bayesian optimization was combined with established variables x to design new catalysts and enhance reaction selectivity. Moreover, the catalyst design in this study successfully pioneered new reactions involving Cu, Rh, and Pt catalysts in a reaction system that did not previously react with transition metals other than Ni or Pd.


Asunto(s)
Teorema de Bayes , Catálisis
4.
Proc Natl Acad Sci U S A ; 117(37): 22873-22879, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32900930

RESUMEN

All life on Earth is built of organic molecules, so the primordial sources of reduced carbon remain a major open question in studies of the origin of life. A variant of the alkaline-hydrothermal-vent theory for life's emergence suggests that organics could have been produced by the reduction of CO2 via H2 oxidation, facilitated by geologically sustained pH gradients. The process would be an abiotic analog-and proposed evolutionary predecessor-of the Wood-Ljungdahl acetyl-CoA pathway of modern archaea and bacteria. The first energetic bottleneck of the pathway involves the endergonic reduction of CO2 with H2 to formate (HCOO-), which has proven elusive in mild abiotic settings. Here we show the reduction of CO2 with H2 at room temperature under moderate pressures (1.5 bar), driven by microfluidic pH gradients across inorganic Fe(Ni)S precipitates. Isotopic labeling with 13C confirmed formate production. Separately, deuterium (2H) labeling indicated that electron transfer to CO2 does not occur via direct hydrogenation with H2 but instead, freshly deposited Fe(Ni)S precipitates appear to facilitate electron transfer in an electrochemical-cell mechanism with two distinct half-reactions. Decreasing the pH gradient significantly, removing H2, or eliminating the precipitate yielded no detectable product. Our work demonstrates the feasibility of spatially separated yet electrically coupled geochemical reactions as drivers of otherwise endergonic processes. Beyond corroborating the ability of early-Earth alkaline hydrothermal systems to couple carbon reduction to hydrogen oxidation through biologically relevant mechanisms, these results may also be of significance for industrial and environmental applications, where other redox reactions could be facilitated using similarly mild approaches.


Asunto(s)
Dióxido de Carbono/química , Ciclo del Carbono , Transporte de Electrón , Hidrógeno/química , Concentración de Iones de Hidrógeno , Respiraderos Hidrotermales/química , Oxidación-Reducción , Fuerza Protón-Motriz
5.
Chemistry ; 26(58): 13170-13176, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32459379

RESUMEN

An S-shaped double azahelicene (1) was synthesized in excellent yield by a palladium-catalyzed double dehydrogenative C-H coupling reaction. The stereochemistry of 1 was confirmed to be dl by single-crystal X-ray diffraction analysis. Selective formation of dl-1 was attributed to the isomerization of the kinetically controlled product (meso-1) into the more thermodynamically stable dl-1 under the applied reaction conditions. dl-1 can coordinate to palladium(II) in a bidentate trans-chelating fashion, which was confirmed by X-ray absorption fine structure (XAFS) as well as by X-ray photoelectron spectroscopy (XPS), diffuse reflectance (DR) UV/Vis, and far-infrared (FIR) absorption spectroscopy. Theoretical calculations of palladium complex 16 revealed a weak attractive interaction between palladium and carbon atoms on the central dimethoxynaphthalene core, which could facilitate a disproportionation between a trans-chelating (dl-1)⋅PdCl2 complex and PdCl2 to form 16.

6.
Chemistry ; 26(58): 13107, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32870511

RESUMEN

Invited for the cover of this issue is Ken Kamikawa and co-workers at Osaka Prefecture University and RIKEN Center for Sustainable Resource Science. The image depicts an S-shaped double azahelicene capturing the palladium in a trans-chelating fashion. Read the full text of the article at 10.1002/chem.202002405.

7.
Chemistry ; 26(26): 5729-5747, 2020 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-31916323

RESUMEN

The increased demand for more efficient, safe, and green production in fine chemical and pharmaceutical industry calls for the development of continuous-flow manufacturing, and for chiral chemicals in particular, enantioselective catalytic processes. In recent years, this emerging direction has received considerable attention and has seen rapid progress. In most cases, catalytic enantioselective flow processes using homogeneous, heterogeneous, or enzymatic catalysts have shown significant advantages over the conventional batch mode, such as shortened reaction times, lower catalysts loadings, and higher selectivities in addition to the normal merits of non-enantioselective flow operations. In this Minireview, the advancements, key strategies, methods, and technologies developed the last six years as well as remaining challenges are summarized.

8.
Chem Pharm Bull (Tokyo) ; 65(9): 805-821, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28867707

RESUMEN

My mission in catalysis research is to develop highly active and reusable supported catalytic systems in terms of fundamental chemistry and industrial application. For this purpose, I developed three types of highly active and reusable supported catalytic systems. The first type involves polymeric base-supported metal catalysts: Novel polymeric imidazole-Pd and Cu complexes were developed that worked at the mol ppm level for a variety of organic transformations. The second involves catalytic membrane-installed microflow reactors: Membranous polymeric palladium and copper complex/nanoparticle catalysts were installed at the center of a microtube to produce novel catalytic membrane-immobilized flow microreactor devices. These catalytic devices mediated a variety of organic transformations to afford the corresponding products in high yield within 1-38 s. The third is a silicon nanowire array-immobilized palladium nanoparticle catalyst. This device promoted a variety of organic transformations as a heterogeneous catalyst. The Mizoroki-Heck reaction proceeded with 280 mol ppb (0.000028 mol%) of the catalyst, affording the corresponding products in high yield.


Asunto(s)
Complejos de Coordinación/química , Catálisis , Cobre/química , Imidazoles/química , Nanopartículas/química , Nanocables/química , Paladio/química , Silicio/química
9.
J Am Chem Soc ; 138(36): 11727-33, 2016 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-27549349

RESUMEN

Tailoring structurally anisotropic molecular assemblies while controlling their orientation on solid substrates is an important subject for advanced technologies that use organic thin films. Here we report a supramolecular scaffold based on tripodal triptycene assemblies, which enables functional molecular units to assemble into a highly oriented, multilayered two-dimensional (2D) structure on solid substrates. The triptycene building block carries an ethynyl group and three flexible side chains at the 10- and 1,8,13-positions, respectively. These bridgehead-substituted tripodal triptycenes self-assembled on solid substrates to form a well-defined "2D hexagonal + 1D lamellar" structure, which developed parallel to the surface of the substrates. Remarkably, the assembling properties of the triptycene building blocks, particularly for a derivative with tri(oxyethylene)-containing side chains, were not impaired when the alkyne terminal was functionalized with a large molecular unit such as C60, which is comparable in diameter to the triptycene framework. Consequently, thin films with a multilayered 2D assembly of the C60 unit were obtained. Flash-photolysis time-resolved microwave conductivity (FP-TRMC) measurements revealed that the C60 film exhibits highly anisotropic charge-transport properties. Bridgehead-substituted tripodal triptycenes may provide a versatile supramolecular scaffold for tailoring the 2D assembly of molecular units into a highly oriented thin film, and in turn for exploiting the full potential of anisotropic molecular functions.

10.
Chemistry ; 21(48): 17269-73, 2015 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-26439220

RESUMEN

The copper(I)-catalyzed Huisgen cycloaddition (azide-alkyne cycloaddition) is an important reaction in click chemistry that ideally proceeds instantaneously. An instantaneous Huisgen cycloaddition has been developed that uses a novel catalytic dinuclear copper complex-containing polymeric membrane-installed microflow device. A polymeric membranous copper catalyst was prepared from poly(4-vinylpyridine), copper(II) sulfate, sodium chloride, and sodium ascorbate at the interface of two laminar flows inside microchannels. Elucidation of the structure by XANES, EXAFS, and elemental analysis, as well as second-order Møller-Plesset perturbation theory (MP2) calculations and density functional theory (DFT) calculations assigned the local structure near Cu as a µ-chloro dinuclear Cu(I) complex. The microflow device promotes the instantaneous click reaction of a variety of alkynes and organic azides to afford the corresponding triazoles in quantitative yield.

11.
Angew Chem Int Ed Engl ; 53(1): 127-31, 2014 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-24243663

RESUMEN

We report the development of a silicon nanowire array-stabilized palladium nanoparticle catalyst, SiNA-Pd. Its use in the palladium-catalyzed Mizoroki-Heck reaction, the hydrogenation of an alkene, the hydrogenolysis of nitrobenzene, the hydrosilylation of an α,ß-unsaturated ketone, and the C-H bond functionalization reactions of thiophenes and indoles achieved a quantitative production with high reusability. The catalytic activity reached several hundred-mol ppb of palladium, reaching a TON of 2 000 000.


Asunto(s)
Paladio/química , Silicio/química , Hidrogenación , Estructura Molecular , Nanopartículas , Nanocables
12.
Commun Chem ; 6(1): 29, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36765132

RESUMEN

Nitrile derivatives are important building blocks in organic synthesis. Herein, we report the serendipitous discovery of an oxygen transfer reaction that produces hydroxyalkyl nitriles from the sequential dehydration and hydrolysis of haloalkyl amides. Product yields of up to 91% were achieved, and the phenylboronic acid was recovered as triphenylboroxine. The triphenylboroxine was reused as a catalyst without any loss of catalytic activity. A probable catalytic pathway was proposed based on control experiments and DFT calculations.

13.
J Am Chem Soc ; 134(6): 3190-8, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22260520

RESUMEN

Metalloenzymes are essential proteins with vital activity that promote high-efficiency enzymatic reactions. To ensure catalytic activity, stability, and reusability for safe, nontoxic, sustainable chemistry, and green organic synthesis, it is important to develop metalloenzyme-inspired polymer-supported metal catalysts. Here, we present a highly active, reusable, self-assembled catalyst of poly(imidazole-acrylamide) and palladium species inspired by metalloenzymes and apply our convolution methodology to the preparation of polymeric metal catalysts. Thus, a metalloenzyme-inspired polymeric imidazole Pd catalyst (MEPI-Pd) was readily prepared by the coordinative convolution of (NH(4))(2)PdCl(4) and poly[(N-vinylimidazole)-co-(N-isopropylacrylamide)(5)] in a methanol-water solution at 80 °C for 30 min. SEM observation revealed that MEPI-Pd has a globular-aggregated, self-assembled structure. TEM observation and XPS and EDX analyses indicated that PdCl(2) and Pd(0) nanoparticles were uniformly dispersed in MEPI-Pd. MEPI-Pd was utilized for the allylic arylation/alkenylation/vinylation of allylic esters and carbonates with aryl/alkenylboronic acids, vinylboronic acid esters, and tetraaryl borates. Even 0.8-40 mol ppm Pd of MEPI-Pd efficiently promoted allylic arylation/alkenylation/vinylation in alcohol and/or water with a catalytic turnover number (TON) of 20,000-1,250,000. Furthermore, MEPI-Pd efficiently promoted the Suzuki-Miyaura reaction of a variety of inactivated aryl chlorides as well as aryl bromides and iodides in water with a TON of up to 3,570,000. MEPI-Pd was reused for the allylic arylation and Suzuki-Miyaura reaction of an aryl chloride without loss of catalytic activity.


Asunto(s)
Imidazoles/química , Paladio/química , Ácidos Borónicos/química , Carbono/química , Catálisis , Química Orgánica/métodos , Ésteres/química , Microscopía Electrónica de Rastreo/métodos , Microscopía Electrónica de Transmisión/métodos , Modelos Químicos , Polímeros/química , Temperatura , Factores de Tiempo
14.
J Am Chem Soc ; 134(22): 9285-90, 2012 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-22587808

RESUMEN

Self-assembly of copper sulfate and a poly(imidazole-acrylamide) amphiphile provided a highly active, reusable, globular, solid-phase catalyst for click chemistry. The self-assembled polymeric Cu catalyst was readily prepared from poly(N-isopropylacrylamide-co-N-vinylimidazole) and CuSO(4) via coordinative convolution. The surface of the catalyst was covered with globular particles tens of nanometers in diameter, and those sheetlike composites were layered to build an aggregated structure. Moreover, the imidazole units in the polymeric ligand coordinate to CuSO(4) to give a self-assembled, layered, polymeric copper complex. The insoluble amphiphilic polymeric imidazole Cu catalyst with even 4.5-45 mol ppm drove the Huisgen 1,3-dipolar cycloaddition of a variety of alkynes and organic azides, including the three-component cyclization of a variety of alkynes, organic halides, and sodium azide. The catalytic turnover number and frequency were up to 209000 and 6740 h(-1), respectively. The catalyst was readily reused without loss of catalytic activity to give the corresponding triazoles quantitatively.


Asunto(s)
Acrilamidas/química , Cobre/química , Imidazoles/química , Compuestos Organometálicos/síntesis química , Tensoactivos/síntesis química , Catálisis , Química Clic , Estructura Molecular , Compuestos Organometálicos/química , Tensoactivos/química
15.
ACS Omega ; 7(28): 24184-24189, 2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35874269

RESUMEN

In this study, a phenylboronic ester-activated aryl iodide-selective Buchwald-Hartwig-type amination was developed. When the reaction of aryl iodides and aryl/aliphatic amines using Ni(acac)2 is carried out in the presence of phenylboronic ester, the Buchwald-Hartwig-type amination proceeds smoothly to afford the corresponding amines in high yields. This reaction does not proceed in the absence of phenylboronic ester. A wide variety of aryl iodides can be applied in the presence of aryl chlorides and bromides, which remain intact during the reaction. The mechanistic studies of this reaction suggest that the phenylboronic ester acts as an activator for the amines to form the ″ate complex″. Chemical kinetics studies show that the reaction of aryl iodides, base, and Ni(acac)2 follows first-order kinetics, while that of amines and phenylboronic ester follows zero-order kinetics. The bioactivity screening of the corresponding products showed that some amination products exhibit antifungal activity.

16.
ACS Omega ; 6(41): 27578-27586, 2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34693179

RESUMEN

To improve product yields in synthetic reactions, it is important to use appropriate catalysts. In this study, we used machine learning to design catalysts for a reaction system in which both Buchwald-Hartwig-type and Suzuki-Miyaura-type cross-coupling reactions proceed simultaneously. First, using an existing dataset, yield prediction models were constructed with machine learning between experimental conditions, including the substrate and catalyst and the yields of the two products. Seven methods for calculating both the substrate and catalyst descriptors were proposed, and the predictive ability of the yield prediction models was discussed in terms of the descriptors and machine learning methods. Then, the constructed models were used to predict the compound yields for new combinations of substrates and catalysts, and the predictions were experimentally validated with high reproducibility, confirming that machine learning can predict yields from experimental conditions with high accuracy. In addition, to design catalysts that will improve the yields in our dataset, we added datasets collected from scientific papers and designed catalyst ligands. The proposed catalyst candidates were tested in actual synthetic experiments, and the experimental results exceeded the existing yields.

17.
JACS Au ; 1(11): 2080-2087, 2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34841419

RESUMEN

A convoluted poly(4-vinylpyridine) cobalt(II) (P4VP-CoCl2) system was developed as a stable and reusable heterogeneous catalyst. The local structure near the Co atom was determined on the basis of experimental data and theoretical calculations. This immobilized cobalt catalyst showed high selectivity and catalytic activity in the [2 + 2 + 2] cyclotrimerization of terminal aryl alkynes. With 0.033 mol % P4VP-CoCl2, the regioselective formation of 1,3,5-triarylbenzene was realized without 1,2,4-triarylbenzene formation. Further, a multigram-scale (11 g) reaction proceeded efficiently. In addition, the polymer-supported catalyst was successfully recovered and used three times. X-ray photoelectron spectroscopy analysis of the recovered catalyst suggested that cobalt was in the +2 oxidation state. The 1,3,5-triarylbenzene derivatives were applied to the synthesis of a molecular beam electron resist and a polycyclic aromatic hydrocarbon.

18.
Sci Rep ; 11(1): 20505, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34675322

RESUMEN

We demonstrated microwave-assisted photooxidation of sulfoxides to the corresponding sulfones using ethynylbenzene as a photosensitizer. Efficiency of the photooxidation was higher under microwave irradiation than under conventional thermal heating conditions. Under the conditions, ethynylbenzene promoted the oxidation more efficiently than conventional photosensitizers benzophenone, anthracene, and rose bengal. Ethynylbenzene, whose T1 state is extremely resistant to intersystem crossing to the ground state, was suitable to this reaction because spectroscopic and related reported studies suggested that this non-thermal effect was caused by elongating lifetime of the T1 state by microwave. This is the first study in which ethynylbenzene is used as a photosensitizer in a microwave-assisted photoreaction.

19.
Chemistry ; 16(37): 11311-9, 2010 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-20715196

RESUMEN

Instantaneous catalytic carbon-carbon bond-forming reactions were achieved in catalytic membrane-installed microchannel devices that have a polymeric palladium-complex membrane. The catalytic membrane-installed microchannel devices were provided inside the microchannels by means of coordinative and ionic molecular convolution at the interface between the organic and aqueous phases flowing laminarly, in which both non-crosslinked linear polymer ligands and palladium species dissolved. The palladium-catalyzed Suzuki-Miyaura reaction of aryl, heteroaryl, and alkenyl halides with arylboronic acids and sodium tetraarylborates was performed with the catalytic membrane-installed microchannel devices to give quantitative yields of biaryls, heterobiaryls, and aryl alkenes within 5 s of residence time in the defined channel region. These microchannel devices were applied to the instantaneous allylic arylation reaction of allylic esters with arylboron reagents under microflow conditions to afford the corresponding coupling products within 1 s of residence time.

20.
ACS Omega ; 5(41): 26938-26945, 2020 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-33111021

RESUMEN

We describe the development of the catalytic reductive alkylation of amines with aldehydes under the atmospheric pressure of H2 using a brush-like silicon-nanostructure-supported palladium nanoparticle composite (SiNS-Pd) as a silicon-wafer-based reusable heterogeneous catalyst. The present reaction of primary and secondary amines with various aliphatic and aromatic aldehydes in the presence of the catalyst (0.02-0.05 mol % Pd) gave the corresponding secondary and tertiary amines including Lomerizine and Aticaprant in a 68% quantitative yield without overalkylation. We also designed and fabricated a flow device equipped with SiNS-Pd for microflow reactions, which was applied to the gas-liquid-solid triphasic reaction system (i.e., H2 gas, a substrate solution, and a solid catalyst). A multigram-scale reaction of aniline and benzaldehyde was demonstrated to obtain N-benzylaniline (ca. 4 g/day), in which the internal volume of the flow channel was 43 µL, the residence time was approximately 1 s, and the turnover number (TON) reached 4.0 × 104 in a continuous 24 h run (1.7 × 103 h-1; 0.50 s-1).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA