Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(15): e2216632120, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37011193

RESUMEN

Spatiotemporal control of cell division in the meristem is vital for plant growth. In the stele of the root apical meristem (RAM), procambial cells divide periclinally to increase the number of vascular cell files. Class III homeodomain leucine zipper (HD-ZIP III) proteins are key transcriptional regulators of RAM development and suppress the periclinal division of vascular cells in the stele; however, the mechanism underlying the regulation of vascular cell division by HD-ZIP III transcription factors (TFs) remains largely unknown. Here, we performed transcriptome analysis to identify downstream genes of HD-ZIP III and found that HD-ZIP III TFs positively regulate brassinosteroid biosynthesis-related genes, such as CONSTITUTIVE PHOTOMORPHOGENIC DWARF (CPD), in vascular cells. Introduction of pREVOLUTA::CPD in a quadruple loss-of-function mutant of HD-ZIP III genes partly rescued the phenotype in terms of the vascular defect in the RAM. Treatment of a quadruple loss-of-function mutant, a gain-of-function mutant of HD-ZIP III, and the wild type with brassinosteroid and a brassinosteroid synthesis inhibitor also indicated that HD-ZIP III TFs act together to suppress vascular cell division by increasing brassinosteroid levels. Furthermore, brassinosteroid application suppressed the cytokinin response in vascular cells. Together, our findings suggest that the suppression of vascular cell division by HD-ZIP III TFs is caused, at least in part, by the increase in brassinosteroid levels through the transcriptional activation of brassinosteroid biosynthesis genes in the vascular cells of the RAM. This elevated brassinosteroid level suppresses cytokinin response in vascular cells, inhibiting vascular cell division in the RAM.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Meristema , Brasinoesteroides/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Leucina Zippers/genética , Citocininas/metabolismo , División Celular , Regulación de la Expresión Génica de las Plantas
2.
Plant Physiol ; 195(3): 2389-2405, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38635969

RESUMEN

Glycogen synthase kinase 3 (GSK3) is an evolutionarily conserved serine/threonine protein kinase in eukaryotes. In plants, the GSK3-like kinase BRASSINOSTEROID-INSENSITIVE 2 (BIN2) functions as a central signaling node through which hormonal and environmental signals are integrated to regulate plant development and stress adaptation. BIN2 plays a major regulatory role in brassinosteroid (BR) signaling and is critical for phosphorylating/inactivating BRASSINAZOLE-RESISTANT 1 (BZR1), also known as BRZ-INSENSITIVE-LONG HYPOCOTYL 1 (BIL1), a master transcription factor of BR signaling, but the detailed regulatory mechanism of BIN2 action has not been fully revealed. In this study, we identified BIL8 as a positive regulator of BR signaling and plant growth in Arabidopsis (Arabidopsis thaliana). Genetic and biochemical analyses showed that BIL8 is downstream of the BR receptor BRASSINOSTEROID-INSENSITIVE 1 (BRI1) and promotes the dephosphorylation of BIL1/BZR1. BIL8 interacts with and inhibits the activity of the BIN2 kinase, leading to the accumulation of dephosphorylated BIL1/BZR1. BIL8 suppresses the cytoplasmic localization of BIL1/BZR1, which is induced via BIN2-mediated phosphorylation. Our study reveals a regulatory factor, BIL8, that positively regulates BR signaling by inhibiting BIN2 activity.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Brasinoesteroides , Regulación de la Expresión Génica de las Plantas , Transducción de Señal , Brasinoesteroides/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fosforilación , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética
3.
Plant Cell Physiol ; 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38242155

RESUMEN

Drought stress is a major threat leading to global plant and crop losses in the context of the climate change crisis. Brassinosteroids (BRs) are plant steroid hormones, and the BR signaling mechanism in plant development has been well elucidated. Nevertheless, the specific mechanisms of BR signaling in drought stress are still unclear. Here, we identify a novel Arabidopsis gene, BRZ INSENSITIVE LONG HYPOCOTYL 9 (BIL9), which promotes plant growth via BR signaling. Overexpression of BIL9 enhances drought and mannitol stress resistance and increases the expression of drought-responsive genes. BIL9 protein is induced by dehydration and interacts with the HD-Zip IV transcription factor HOMEODOMAIN GLABROUS 11 (HDG11), which is known to promote plant resistance to drought stress, in vitro and in vivo. BIL9 enhanced the transcriptional activity of HDG11 for drought-stress-resistant genes. BIL9 is a novel BR signaling factor that enhances both plant growth and plant drought resistance.

4.
Biosci Biotechnol Biochem ; 86(8): 1041-1048, 2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35583242

RESUMEN

Brassinosteroids (BRs), a kind of phytohormone, have various biological activities such as promoting plant growth, increasing stress resistance, and chloroplast development. Though BRs have been known to have physiological effects on chloroplast, the detailed mechanism of chloroplast development and chlorophyll biosynthesis in BR signaling remains unknown. Here we identified a recessive pale green Arabidopsis mutant, Brz-insensitive-pale green1 (bpg1), which was insensitive to promoting of greening by BR biosynthesis-specific inhibitor Brz in the light. BPG1 gene encoded chlorophyll biosynthesis enzyme, 3, 8-divinyl protochlorophyllide a 8-vinyl reductase (DVR), and bpg1 accumulated divinyl chlorophylls. Chloroplast development was suppressed in bpg1. Brz dramatically increased the expression of chlorophyll biosynthesis enzyme genes, including BPG1. These results suggest that chlorophyll biosynthesis enzymes are regulated by BR signaling in the aspect of gene expression and BPG1 plays an important role in regulating chloroplast development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Clorofila/metabolismo , Regulación de la Expresión Génica de las Plantas
5.
Biosci Biotechnol Biochem ; 86(8): 1004-1012, 2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35687006

RESUMEN

Brassinolide (BL) is a possible plant growth regulator in agriculture, but the presence of a steroid skeleton hampers the field application of BL in agriculture because of its high synthetic cost. We discovered NSBR1 as the first nonsteroidal BL-like compound using in silico technology. Searching for more potent BL-like compounds, we modified the structure of NSBR1 with respect to 2 benzene rings and the piperazine ring. The activity of synthesized compounds was measured in Arabidopsis hypocotyl elongation. The propyl group of butyryl moiety of NSBR1 was changed to various alkyl groups, such as straight, branched, and cyclic alkyl chains. Another substituent, F, at the ortho position of the B ring toward the piperazine ring was changed to other substituents. A methyl group was introduced to the piperazine ring. Most of the newly synthesized compounds with the 3,4-(OH)2 group at the A ring significantly elongated the hypocotyl of Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Esteroides Heterocíclicos , Brasinoesteroides , Piperazinas , Esteroides Heterocíclicos/farmacología
6.
J Plant Res ; 134(6): 1335-1349, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34477986

RESUMEN

Although anthocyanins are widely distributed in higher plants, betalains have replaced anthocyanins in most species of the order Caryophyllales. The accumulation of flavonols in Caryophyllales plants implies that the late step of anthocyanin biosynthesis from dihydroflavonols to anthocyanins may be blocked in Caryophyllales. The isolation and characterization of functional dihydroflavonol 4-reductase (DFR) and anthocyanidin synthase (ANS) from Caryophyllales plants has indicated a lack of anthocyanins due to suppression of DFR and ANS. In this study, we demonstrated that overexpression of DFR and ANS from Spinacia oleracea (SoDFR and SoANS, respectively) with PhAN9, which encodes glutathione S-transferase (required for anthocyanin sequestration) from Petunia induces ectopic anthocyanin accumulation in yellow tepals of the cactus Astrophytum myriostigma. A promoter assay of SoANS showed that the Arabidopsis MYB transcription factor PRODUCTION OF ANTHOCYANIN PIGMENT1 (PAP1) activated the SoANS promoter in Arabidopsis leaves. The overexpression of Arabidopsis transcription factors with PhAN9 also induced ectopic anthocyanin accumulation in yellow cactus tepals. PAP homologs from betalain-producing Caryophyllales did not activate the promoter of ANS. In-depth characterization of Caryophyllales PAPs and site-directed mutagenesis in the R2R3-MYB domains identified the amino acid residues affecting transactivation of Caryophyllales PAPs. The substitution of amino acid residues recovered the transactivation ability of Caryophyllales PAPs. Therefore, loss of function in MYB transcription factors may suppress expression of genes involved in the late stage of anthocyanin synthesis, resulting in a lack of anthocyanin in betalain-producing Caryophyllales plants.


Asunto(s)
Arabidopsis , Caryophyllales , Antocianinas , Arabidopsis/genética , Arabidopsis/metabolismo , Betalaínas/metabolismo , Caryophyllales/genética , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo
7.
Plant Cell Physiol ; 59(8): 1555-1567, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-30053249

RESUMEN

Auxin and cytokinin control callus formation from developed plant organs as well as shoot regeneration from callus. Dedifferentiation and regeneration of plant cells by auxin and cytokinin stimulation are considered to be caused by the reprogramming of callus cells, but this hypothesis is still argued to this day. Although an elucidation of the regulatory mechanisms of callus formation and shoot regeneration has helped advance plant biotechnology research, many plant species are intractable to transformation because of difficulties with callus formation. In this study, we identified fipexide (FPX) as a useful regulatory compound through a chemical biology-based screening. FPX was shown to act as a chemical inducer in callus formation, shoot regeneration and Agrobacterium infection. With regards to morphology, the cellular organization of FPX-induced calli differed from those produced under auxin/cytokinin conditions. Microarray analysis revealed that the expression of approximately 971 genes was up-regulated 2-fold after a 2 d FPX treatment compared with non-treated plants. Among these 971 genes, 598 genes were also induced by auxin/cytokinin, whereas 373 genes were specifically expressed upon FPX treatment only. FPX can promote callus formations in rice, poplar, soybean, tomato and cucumber, and thus can be considered a useful tool for revealing the mechanisms of plant development and for use in plant transformation technologies.


Asunto(s)
Piperazinas/farmacología , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/metabolismo , Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Brotes de la Planta/fisiología
8.
Plant Cell ; 27(2): 375-90, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25663622

RESUMEN

Brassinosteroids (BRs) play important roles in plant development and the response to environmental cues. BIL1/BZR1 is a master transcription factor in BR signaling, but the mechanisms that lead to the finely tuned targeting of BIL1/BZR1 by BRs are unknown. Here, we identified BRZ-SENSITIVE-SHORT HYPOCOTYL1 (BSS1) as a negative regulator of BR signaling in a chemical-biological analysis involving brassinazole (Brz), a specific BR biosynthesis inhibitor. The bss1-1D mutant, which overexpresses BSS1, exhibited a Brz-hypersensitive phenotype in hypocotyl elongation. BSS1 encodes a BTB-POZ domain protein with ankyrin repeats, known as BLADE ON PETIOLE1 (BOP1), which is an important regulator of leaf morphogenesis. The bss1-1D mutant exhibited an increased accumulation of phosphorylated BIL1/BZR1 and a negative regulation of BR-responsive genes. The number of fluorescent BSS1/BOP1-GFP puncta increased in response to Brz treatment, and the puncta were diffused by BR treatment in the root and hypocotyl. We show that BSS1/BOP1 directly interacts with BIL1/BZR1 or BES1. The large protein complex formed between BSS1/BOP1 and BIL1/BZR1 was only detected in the cytosol. The nuclear BIL1/BZR1 increased in the BSS1/BOP1-deficient background and decreased in the BSS1/BOP1-overexpressing background. Our study suggests that the BSS1/BOP1 protein complex inhibits the transport of BIL1/BZR1 to the nucleus from the cytosol and negatively regulates BR signaling.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Complejos Multiproteicos/metabolismo , Desarrollo de la Planta , Transducción de Señal , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Brasinoesteroides/farmacología , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Citosol/efectos de los fármacos , Citosol/metabolismo , Oscuridad , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas Fluorescentes Verdes/metabolismo , Modelos Biológicos , Mutación/genética , Fenotipo , Desarrollo de la Planta/efectos de los fármacos , Unión Proteica/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Triazoles/farmacología
10.
Int J Mol Sci ; 16(8): 17273-88, 2015 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-26230686

RESUMEN

The plant steroid hormone brassinosteroids (BRs) are important signal mediators that regulate broad aspects of plant growth and development. With the discovery of brassinoazole (Brz), the first specific inhibitor of BR biosynthesis, several triazole-type BR biosynthesis inhibitors have been developed. In this article, we report that fenarimol (FM), a pyrimidine-type fungicide, exhibits potent inhibitory activity against BR biosynthesis. FM induces dwarfism and the open cotyledon phenotype of Arabidopsis seedlings in the dark. The IC50 value for FM to inhibit stem elongation of Arabidopsis seedlings grown in the dark was approximately 1.8 ± 0.2 µM. FM-induced dwarfism of Arabidopsis seedlings could be restored by brassinolide (BL) but not by gibberellin (GA). Assessment of the target site of FM in BR biosynthesis by feeding BR biosynthesis intermediates indicated that FM interferes with the side chain hydroxylation of BR biosynthesis from campestanol to teasterone. Determination of the binding affinity of FM to purified recombinant CYP90D1 indicated that FM induced a typical type II binding spectrum with a Kd value of approximately 0.79 µM. Quantitative real-time PCR analysis of the expression level of the BR responsive gene in Arabidopsis seedlings indicated that FM induces the BR deficiency in Arabidopsis.


Asunto(s)
Antifúngicos/farmacología , Arabidopsis/efectos de los fármacos , Brasinoesteroides/biosíntesis , Pirimidinas/farmacología , Antifúngicos/toxicidad , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Unión Proteica , Pirimidinas/toxicidad , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo
11.
Biosci Biotechnol Biochem ; 78(6): 960-8, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25036120

RESUMEN

The plant steroid hormones brassinosteroids (BRs) play important roles in plant growth and responses to stresses. The up-regulation of pathogen resistance by BR signaling has been analyzed, but the relationship between BR and insect herbivores remains largely unclear. BIL1/BZR1 is a BR master transcription factor known to be involved in the regulation of plant development through work conducted on a gain of function mutation. Here, we analyzed the function of BIL1/BZR1 in response to insect feeding and demonstrated that resistance against thrip feeding was increased in the bil1-1D/bzr1-1D mutant compared to wild-type. We generated Lotus japonicus transgenic plants that over-express the Arabidopsis bil1/bzr1 mutant, Lj-bil1/bzr1-OX. The Lj-bil1/bzr1-OX plants showed increased resistance to thrip feeding. The expression levels of the jasmoninc acid (JA)-inducible VSP genes were increased in both Arabidopsis bil1-1D/bzr1-1D mutants and L. japonicus Lj-bil1/bzr1-OX plants. The resistance to thrip feeding caused by the BIL1/BZR1 gene may involve JA signaling.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Brasinoesteroides/metabolismo , Herbivoria , Lotus/fisiología , Proteínas Nucleares/metabolismo , Thysanoptera , Factores de Transcripción/metabolismo , Animales , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Unión al ADN , Lotus/citología , Lotus/genética , Mutación , Proteínas Nucleares/genética , Fenotipo , Hojas de la Planta/citología , Hojas de la Planta/genética , Plantas Modificadas Genéticamente , Transducción de Señal , Factores de Transcripción/genética , Transformación Genética
12.
Biosci Biotechnol Biochem ; 78(3): 420-9, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25036828

RESUMEN

Brassinosteroids are plant steroid hormones that regulate plant organs and chloroplast development. The detailed molecular mechanism for plant development by BR signaling is yet to be revealed, and many points regarding the relationship between BR signaling and chloroplast development remain unknown. We identify here the dominant mutant Brz-insensitive-pale green3-1D (bpg3-1D) from the Arabidopsis FOX lines that show reduced sensitivity to the chlorophyll accumulation promoted by the BR biosynthesis inhibitor, Brassinazole (Brz), in the light. BPG3 encodes a novel chloroplast protein that is evolutionally conserved in bacteria, algae, and higher plants. The expression of BPG3 was induced by light and Brz. The inhibition of electron transport in photosystem II of the chloroplasts was detected in bpg3-1D. These results suggest that BPG3 played an important role in regulating photosynthesis in the chloroplast under BR signaling.


Asunto(s)
Proteínas de Arabidopsis/genética , Brasinoesteroides/metabolismo , Proteínas de Cloroplastos/genética , Cloroplastos/genética , Fotosíntesis/genética , Hojas de la Planta/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Luz , Hojas de la Planta/crecimiento & desarrollo , Plantones/genética , Transducción de Señal/genética
13.
Nat Commun ; 15(1): 370, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38191552

RESUMEN

Chloroplast development adapts to the environment for performing suitable photosynthesis. Brassinosteroids (BRs), plant steroid hormones, have crucial effects on not only plant growth but also chloroplast development. However, the detailed molecular mechanisms of BR signaling in chloroplast development remain unclear. Here, we identify a regulator of chloroplast development, BPG4, involved in light and BR signaling. BPG4 interacts with GOLDEN2-LIKE (GLK) transcription factors that promote the expression of photosynthesis-associated nuclear genes (PhANGs), and suppresses their activities, thereby causing a decrease in the amounts of chlorophylls and the size of light-harvesting complexes. BPG4 expression is induced by BR deficiency and light, and is regulated by the circadian rhythm. BPG4 deficiency causes increased reactive oxygen species (ROS) generation and damage to photosynthetic activity under excessive high-light conditions. Our findings suggest that BPG4 acts as a chloroplast homeostasis factor by fine-tuning the expression of PhANGs, optimizing chloroplast development, and avoiding ROS generation.


Asunto(s)
Brasinoesteroides , Cloroplastos , Especies Reactivas de Oxígeno , Reguladores del Crecimiento de las Plantas , Homeostasis , Factores de Transcripción/genética
14.
Planta ; 237(6): 1509-25, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23494613

RESUMEN

Plant steroid hormones, brassinosteroids, are essential for growth, development and responses to environmental stresses in plants. Although BR signaling proteins are localized in many organelles, i.e., the plasma membrane, nuclei, endoplasmic reticulum and vacuole, the details regarding the BR signaling pathway from perception at the cellular membrane receptor BRASSINOSTEROID INSENSITIVE 1 (BRI1) to nuclear events include several steps. Brz (Brz220) is a specific inhibitor of BR biosynthesis. In this study, we used Brz-mediated chemical genetics to identify Brz-insensitive-long hypocotyls 2-1D (bil2-1D). The BIL2 gene encodes a mitochondrial-localized DnaJ/Heat shock protein 40 (DnaJ/Hsp40) family, which is involved in protein folding. BIL2-overexpression plants (BIL2-OX) showed cell elongation under Brz treatment, increasing the growth of plant inflorescence and roots, the regulation of BR-responsive gene expression and suppression against the dwarfed BRI1-deficient mutant. BIL2-OX also showed resistance against the mitochondrial ATPase inhibitor oligomycin and higher levels of exogenous ATP compared with wild-type plants. BIL2 participates in resistance against salinity stress and strong light stress. Our results indicate that BIL2 induces cell elongation during BR signaling through the promotion of ATP synthesis in mitochondria.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Mitocondrias/metabolismo , Desarrollo de la Planta , Transducción de Señal , Adenosina Trifosfato/biosíntesis , Secuencia de Aminoácidos , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Ambiente , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Genes de Plantas/genética , Proteínas del Choque Térmico HSP40/genética , Proteínas del Choque Térmico HSP40/metabolismo , Luz , Mitocondrias/efectos de los fármacos , Mitocondrias/efectos de la radiación , Datos de Secuencia Molecular , Mutación/genética , Especificidad de Órganos/efectos de los fármacos , Especificidad de Órganos/genética , Especificidad de Órganos/efectos de la radiación , Fenotipo , Desarrollo de la Planta/efectos de los fármacos , Desarrollo de la Planta/genética , Desarrollo de la Planta/efectos de la radiación , Interferencia de ARN/efectos de los fármacos , Interferencia de ARN/efectos de la radiación , Tolerancia a la Sal/efectos de los fármacos , Tolerancia a la Sal/genética , Tolerancia a la Sal/efectos de la radiación , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transducción de Señal/efectos de la radiación , Cloruro de Sodio/farmacología , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Estrés Fisiológico/efectos de la radiación
15.
Plant Biotechnol (Tokyo) ; 39(2): 185-189, 2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35937534

RESUMEN

The brassinosteroid (BR) phytohormone is an important regulator of plant growth. To identify novel transcription factors that regulate BR responses, we screened chimeric repressor gene silencing technology (CRES-T) plants, in which transcription factors were converted into chimeric repressors by the fusion of SRDX plant-specific repression domain, with brassinazole (Brz), an inhibitor of BR biosynthesis. We identified that a line that expressed the chimeric repressor for zinc finger homeobox transcription factor, BRASSINOSTEORID-RELATED-HOMEOBOX-2 (BHB2-sx), exhibited Brz-hypersensitive phenotype with shorter hypocotyl under dark, dwarf and round and dark green leaves similar to BR-deficient phenotype. Similar to BHB2-sx plants, bhb2 knockout mutant also exhibited Brz hypersensitive phenotype. In contrast, ectopic expression of BHB2 (BHB2-ox) showed hypocotyl elongation phenotype (BR excessive), showing decrease to Brz sensitivity. The expression of the DWF4 and CPD BR biosynthesis genes was repressed in BHB2-sx plants, whereas it was enhanced in BHB2-ox plants. The BR deficient-like phenotype of BHB2-sx plants was partially restored by treatment with brassinolide (BL), indicating that the BR deficient phenotype of BHB2-sx plant may be due to suppression of BR biosynthesis. Our results indicate that BHB2 is a positive regulator of BR response may be due to the promotion of BR biosynthesis genes.

16.
Plant Signal Behav ; : 1-5, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36576149

RESUMEN

Cell size control is one of the prerequisites for plant growth and development. Recently, a GRAS family transcription factor, SCARECROW-LIKE28 (SCL28), was identified as a critical regulator for both mitotic and postmitotic cell-size control. Here, we show that SCL28 is specifically expressed in proliferating cells and exerts its function to delay G2 progression during mitotic cell cycle in Arabidopsis thaliana. Overexpression of SCL28 provokes a significant enlargement of cells in various organs and tissues, such as leaves, flowers and seeds, to different extents depending on the type of cells. The increased cell size is most likely due to a delayed G2 progression and accelerated onset of endoreplication, an atypical cell cycle repeating DNA replication without cytokinesis or mitosis. Unlike DWARF AND LOW-TILLERING, a rice ortholog of SCL28, SCL28 may not have a role in brassinosteroid (BR) signaling because sensitivity against brassinazole, a BR biosynthesis inhibitor, was not dramatically altered in scl28 mutant and SCL28-overexpressing plants. Collectively, our findings strengthen a recently proposed model of cell size control by SCL28 and suggest the presence of diversified evolutionary mechanisms for the regulation and action of SCL28.

17.
Nat Plants ; 8(12): 1440-1452, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36522451

RESUMEN

BRZ-INSENSITIVE-LONG 1 (BIL1)/BRASSINAZOLE-RESISTANT 1 (BZR1) and its homologues are plant-specific transcription factors that convert the signalling of the phytohormones brassinosteroids (BRs) to transcriptional responses, thus controlling various physiological processes in plants. Although BIL1/BZR1 upregulates some BR-responsive genes and downregulates others, the molecular mechanism underlying the dual roles of BIL1/BZR1 is still poorly understood. Here we show that BR-responsive transcriptional repression by BIL1/BZR1 requires the tight binding of BIL1/BZR1 alone to the 10 bp elements of DNA fragments containing the known 6 bp core-binding motifs at the centre. Furthermore, biochemical and structural evidence demonstrates that the selectivity for two nucleobases flanking the core motifs is realized by the DNA shape readout of BIL1/BZR1 without direct recognition of the nucleobases. These results elucidate the molecular and structural basis of transcriptional repression by BIL1/BZR1 and contribute to further understanding of the dual roles of BIL1/BZR1 in BR-responsive gene regulation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Brasinoesteroides/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Arabidopsis/metabolismo , ADN/metabolismo , Regulación de la Expresión Génica de las Plantas
18.
Plant Biotechnol (Tokyo) ; 39(2): 209-214, 2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35937537

RESUMEN

Brassinosteroid (BR) is a phytohormone that acts as important regulator of plant growth. To identify novel transcription factors that may be involved in unknown mechanisms of BR signaling, we screened the chimeric repressor expressing plants (CRES-T), in which transcription factors were converted into chimeric repressors by the fusion of SRDX plant-specific repression domain, to identify those that affect the expression of BR inducible genes. Here, we identified a homeobox-leucine zipper type transcription factor, BRASSINOSTEROID-RELATED-HOMEOBOX 3 (BHB3), of which a chimeric repressor expressing plants (BHB3-sx) significantly downregulated the expression of BAS1 and SAUR-AC1 that are BR inducible genes. Interestingly, ectopic expression of BHB3 (BHB3-ox) also repressed the BR inducible genes and shorten hypocotyl that would be similar to a BR-deficient phenotype. Interestingly, both BHB3-sx and BHB3-ox showed pale green phenotype, in which the expression of genes related photosynthesis and chlorophyll contents were significantly decreased. We found that BHB3 contains three motifs similar to the conserved EAR-repression domain, suggesting that BHB3 may act as a transcriptional repressor. These results indicate that BHB3 might play an important role not only to the BR signaling but also the regulation of greenings.

19.
Plant J ; 61(3): 409-22, 2010 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-19919572

RESUMEN

Brassinazole (Brz) is a specific inhibitor of the biosynthesis of brassinosteroids (BRs), which regulate plant organ and chloroplast development. We identified a recessive pale green Arabidopsis mutant, bpg2-1 (Brz-insensitive-pale green 2-1) that showed reduced sensitivity to chlorophyll accumulation promoted by Brz in the light. BPG2 encodes a chloroplast-localized protein with a zinc finger motif and four GTP-binding domains that are necessary for normal chloroplast biogenesis. BPG2-homologous genes are evolutionally conserved in plants, green algae and bacteria. Expression of BPG2 is induced by light and Brz. Chloroplasts of the bpg2-1 mutant have a decreased number of stacked grana thylakoids. In bpg2-1 and bpg2-2 mutants, there was no reduction in expression of rbcL and psbA, but there was abnormal accumulation of precursors of chloroplast 16S and 23S rRNA. Chloroplast protein accumulation induced by Brz was suppressed by the bpg2 mutation. These results indicate that BPG2 plays an important role in post-transcriptional and translational regulation in the chloroplast, and is a component of BR signaling.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Proteínas de Unión al GTP/metabolismo , ARN Ribosómico 16S/metabolismo , ARN Ribosómico 23S/metabolismo , Esteroides/metabolismo , Secuencia de Aminoácidos , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Cloroplastos/ultraestructura , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/genética , Regulación de la Expresión Génica de las Plantas , Microscopía Electrónica , Datos de Secuencia Molecular , Mutación , Filogenia , ARN del Cloroplasto/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Transcripción Genética
20.
Front Plant Sci ; 12: 684987, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34262584

RESUMEN

Plants in Mongolian grasslands are exposed to short, dry summers and long, cold winters. These plants should be prepared for fast germination and growth activity in response to the limited summer rainfall. The wild plant species adapted to the Mongolian grassland environment may allow us to explore useful genes, as a source of unique genetic codes for crop improvement. Here, we identified the Chloris virgata Dornogovi accession as the fastest germinating plant in major Mongolian grassland plants. It germinated just 5 h after treatment for germination initiation and showed rapid growth, especially in its early and young development stages. This indicates its high growth potential compared to grass crops such as rice and wheat. By assessing growth recovery after animal bite treatment (mimicked by cutting the leaves with scissors), we found that C. virgata could rapidly regenerate leaves after being damaged, suggesting high regeneration potential against grazing. To analyze the regulatory mechanism involved in the high growth potential of C. virgata, we performed RNA-seq-based transcriptome analysis and illustrated a comprehensive gene expression map of the species. Through de novo transcriptome assembly with the RNA-seq reads from whole organ samples of C. virgata at the germination stage (2 days after germination, DAG), early young development stage (8 DAG), young development stage (17 DAG), and adult development stage (28 DAG), we identified 21,589 unified transcripts (contigs) and found that 19,346 and 18,156 protein-coding transcripts were homologous to those in rice and Arabidopsis, respectively. The best-aligned sequences were annotated with gene ontology groups. When comparing the transcriptomes across developmental stages, we found an over-representation of genes involved in growth regulation in the early development stage in C. virgata. Plant development is tightly regulated by phytohormones such as brassinosteroids, gibberellic acid, abscisic acid, and strigolactones. Moreover, our transcriptome map demonstrated the expression profiles of orthologs involved in the biosynthesis of these phytohormones and their signaling networks. We discuss the possibility that C. virgata phytohormone signaling and biosynthesis genes regulate early germination and growth advantages. Comprehensive transcriptome information will provide a useful resource for gene discovery and facilitate a deeper understanding of the diversity of the regulatory systems that have evolved in C. virgata while adapting to severe environmental conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA