Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Cell ; 164(5): 1031-45, 2016 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-26898330

RESUMEN

During development, sensory axons compete for limiting neurotrophic support, and local neurotrophin insufficiency triggers caspase-dependent axon degeneration. The signaling driving axon degeneration upon local deprivation is proposed to reside within axons. Our results instead support a model in which, despite the apoptotic machinery being present in axons, the cell body is an active participant in gating axonal caspase activation and axon degeneration. Loss of trophic support in axons initiates retrograde activation of a somatic pro-apoptotic pathway, which, in turn, is required for distal axon degeneration via an anterograde pro-degenerative factor. At a molecular level, the cell body is the convergence point of two signaling pathways whose integrated action drives upregulation of pro-apoptotic Puma, which, unexpectedly, is confined to the cell body. Puma then overcomes inhibition by pro-survival Bcl-xL and Bcl-w and initiates the anterograde pro-degenerative program, highlighting the role of the cell body as an arbiter of large-scale axon removal.


Asunto(s)
Axones/patología , Neuronas/patología , Transducción de Señal , Secuencia de Aminoácidos , Animales , Apoptosis , Proteínas Reguladoras de la Apoptosis/química , Proteínas Reguladoras de la Apoptosis/metabolismo , Axones/metabolismo , Ratones , Datos de Secuencia Molecular , Degeneración Nerviosa/patología , Neuronas/metabolismo , Proteínas/metabolismo , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/metabolismo , Proteína bcl-X/metabolismo
2.
Nature ; 563(7730): E21, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30275479

RESUMEN

An Amendment to this Letter has been published and is linked from the HTML version of this paper.

3.
Genes Cells ; 22(6): 552-567, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28497540

RESUMEN

In meiosis I, sister chromatids are captured by microtubules emanating from the same pole (mono-orientation), and centromeric cohesion is protected throughout anaphase. Shugoshin, which is localized to centromeres depending on the phosphorylation of histone H2A by Bub1 kinase, plays a central role in protecting meiotic cohesin Rec8 from separase cleavage. Another key meiotic kinetochore factor, meikin, may regulate cohesion protection, although the underlying molecular mechanisms remain elusive. Here, we show that fission yeast Moa1 (meikin), which associates stably with CENP-C during meiosis I, recruits Plo1 (polo-like kinase) to the kinetochores and phosphorylates Spc7 (KNL1) to accumulate Bub1. Consequently, in contrast to the transient kinetochore localization of mitotic Bub1, meiotic Bub1 persists at kinetochores until anaphase I. The meiotic Bub1 pool ensures robust Sgo1 (shugoshin) localization and cohesion protection at centromeres by cooperating with heterochromatin protein Swi6, which binds and stabilizes Sgo1. Furthermore, molecular genetic analyses show a hierarchical regulation of centromeric cohesion protection by meikin and shugoshin that is important for establishing meiosis-specific chromosome segregation. We provide evidence that the meiosis-specific Bub1 regulation is conserved in mouse.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Regulación Fúngica de la Expresión Génica , Meiosis , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Animales , Adhesión Celular , Células Cultivadas , Centrómero/genética , Centrómero/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/fisiología , Cinetocoros , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microtúbulos/metabolismo , Fosforilación , Schizosaccharomyces/citología , Schizosaccharomyces/crecimiento & desarrollo , Espermatocitos/citología , Espermatocitos/metabolismo , Quinasa Tipo Polo 1
4.
J Neurosci ; 35(45): 15026-38, 2015 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-26558774

RESUMEN

Calcium is a key regulator of axon degeneration caused by trauma and disease, but its specific spatial and temporal dynamics in injured axons remain unclear. To clarify the function of calcium in axon degeneration, we observed calcium dynamics in single injured neurons in live zebrafish larvae and tested the temporal requirement for calcium in zebrafish neurons and cultured mouse DRG neurons. Using laser axotomy to induce Wallerian degeneration (WD) in zebrafish peripheral sensory axons, we monitored calcium dynamics from injury to fragmentation, revealing two stereotyped phases of axonal calcium influx. First, axotomy triggered a transient local calcium wave originating at the injury site. This initial calcium wave only disrupted mitochondria near the injury site and was not altered by expression of the protective WD slow (WldS) protein. Inducing multiple waves with additional axotomies did not change the kinetics of degeneration. In contrast, a second phase of calcium influx occurring minutes before fragmentation spread as a wave throughout the axon, entered mitochondria, and was abolished by WldS expression. In live zebrafish, chelating calcium after the first wave, but before the second wave, delayed the progress of fragmentation. In cultured DRG neurons, chelating calcium early in the process of WD did not alter degeneration, but chelating calcium late in WD delayed fragmentation. We propose that a terminal calcium wave is a key instructive component of the axon degeneration program. SIGNIFICANCE STATEMENT: Axon degeneration resulting from trauma or neurodegenerative disease can cause devastating deficits in neural function. Understanding the molecular and cellular events that execute axon degeneration is essential for developing treatments to address these conditions. Calcium is known to contribute to axon degeneration, but its temporal requirements in this process have been unclear. Live calcium imaging in severed zebrafish neurons and temporally controlled pharmacological treatments in both zebrafish and cultured mouse sensory neurons revealed that axonal calcium influx late in the degeneration process regulates axon fragmentation. These findings suggest that temporal considerations will be crucial for developing treatments for diseases associated with axon degeneration.


Asunto(s)
Axones/metabolismo , Axones/patología , Señalización del Calcio/fisiología , Calcio/fisiología , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Animales , Animales Modificados Genéticamente , Células Cultivadas , Ganglios Espinales/citología , Ganglios Espinales/fisiología , Ratones , Pez Cebra
6.
Nature ; 455(7210): 251-5, 2008 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-18716626

RESUMEN

The centromere of a chromosome is composed mainly of two domains, a kinetochore assembling core centromere and peri-centromeric heterochromatin regions. The crucial role of centromeric heterochromatin is still unknown, because even in simpler unicellular organisms such as the fission yeast Schizosaccharomyces pombe, the heterochromatin protein Swi6 (HP1 homologue) has several functions at centromeres, including silencing gene expression and recombination, enriching cohesin, promoting kinetochore assembly, and, ultimately, preventing erroneous microtubule attachment to the kinetochores. Here we show that the requirement of heterochromatin for mitotic chromosome segregation is largely replaced by forcibly enriching cohesin at centromeres in fission yeast. However, this enrichment of cohesin is not sufficient to replace the meiotic requirement for heterochromatin. We find that the heterochromatin protein Swi6 associates directly with meiosis-specific shugoshin Sgo1, a protector of cohesin at centromeres. A point mutation of Sgo1 (V242E), which abolishes the interaction with Swi6, impairs the centromeric localization and function of Sgo1. The forced centromeric localization of Sgo1 restores proper meiotic chromosome segregation in swi6 cells. We also show that the direct link between HP1 and shugoshin is conserved in human cells. Taken together, our findings suggest that the recruitment of shugoshin is the important primary role for centromeric heterochromatin in ensuring eukaryotic chromosome segregation.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Centrómero/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Heterocromatina/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Homólogo de la Proteína Chromobox 5 , Segregación Cromosómica , Humanos , Meiosis , Mitosis , Unión Proteica , Transporte de Proteínas , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Cohesinas
7.
EMBO Rep ; 12(11): 1189-95, 2011 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-21979813

RESUMEN

In fission yeast, meiotic mono-orientation of sister kinetochores is established by cohesion at the core centromere, which is established by a meiotic cohesin complex and the kinetochore protein Moa1. The cohesin subunit Psm3 is acetylated by Eso1 and deacetylated by Clr6. We show that in meiosis, Eso1 is required for establishing core centromere cohesion during S phase, whereas Moa1 is required for maintaining this cohesion after S phase. The clr6-1 mutation suppresses the mono-orientation defect of moa1Δ cells, although the Clr6 target for this suppression is not Psm3. Thus, several acetylations are crucial for establishing and maintaining core centromere cohesion.


Asunto(s)
Meiosis , Schizosaccharomyces/citología , Schizosaccharomyces/metabolismo , Acetilación , Replicación del ADN , Profase Meiótica I , Modelos Biológicos , Mutación/genética , Subunidades de Proteína/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo
8.
Hum Brain Mapp ; 30(9): 2804-12, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19117274

RESUMEN

Neural correlates of driving and of decision making have been investigated separately, but little is known about the underlying neural mechanisms of decision making in driving. Previous research discusses two types of decision making: reward-weighted decision making and cost-weighted decision making. There are many reward-weighted decision making neuroimaging studies but there are few cost-weighted studies. Considering that driving involves serious risk, it is assumed that decision making in driving is cost weighted. Therefore, neural substrates of cost-weighted decision making can be assessed by investigation of driver's decision making. In this study, neural correlates of resolving uncertainty in driver's decision making were investigated. Turning right in left-hand traffic at a signalized intersection was simulated by computer graphic animation based videos. When the driver's view was occluded by a big truck, the uncertainty of the oncoming traffic was resolved by an in-car video assist system that presented the driver's occluded view. Resolving the uncertainty reduced activity in a distributed area including the amygdala and anterior cingulate. These results implicate the amygdala and anterior cingulate as serving a role in cost-weighted decision making.


Asunto(s)
Conducción de Automóvil/psicología , Encéfalo/fisiología , Cognición/fisiología , Toma de Decisiones/fisiología , Procesos Mentales/fisiología , Desempeño Psicomotor/fisiología , Adulto , Amígdala del Cerebelo/anatomía & histología , Amígdala del Cerebelo/fisiología , Encéfalo/anatomía & histología , Mapeo Encefálico , Potenciales Evocados/fisiología , Femenino , Lateralidad Funcional/fisiología , Giro del Cíngulo/anatomía & histología , Giro del Cíngulo/fisiología , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Vías Nerviosas/anatomía & histología , Vías Nerviosas/fisiología , Neuronas/fisiología , Pruebas Neuropsicológicas , Estimulación Luminosa , Medición de Riesgo/métodos , Adulto Joven
9.
Curr Biol ; 27(7): 1005-1012, 2017 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-28343969

RESUMEN

Sister-chromatid cohesion is established by the cohesin complex in S phase and persists until metaphase, when sister chromatids are captured by microtubules emanating from opposite poles [1]. The Aurora-B-containing chromosome passenger complex (CPC) plays a crucial role in achieving chromosome bi-orientation by correcting erroneous microtubule attachment [2]. The centromeric localization of the CPC relies largely on histone H3-T3 phosphorylation (H3-pT3), which is mediated by the mitotic histone kinase Haspin/Hrk1 [3-5]. Hrk1 localization to centromeres depends largely on the cohesin subunit Pds5 in fission yeast [5]; however, it is unknown how Pds5 regulates Hrk1 localization. Here we identify a conserved Hrk1-interacting motif (HIM) in Pds5 and a Pds5-interacting motif (PIM) in Hrk1 in fission yeast. Mutations in either motif result in the displacement of Hrk1 from centromeres. We also show that the mechanism of Pds5-dependent Hrk1 recruitment is conserved in human cells. Notably, the PIM in Haspin/Hrk1 is reminiscent of the YSR motif found in the mammalian cohesin destabilizer Wapl and stabilizer Sororin, both of which bind PDS5 [6-12]. Similarly, and through the same motifs, fission yeast Pds5 binds to Wpl1/Wapl and acetyltransferase Eso1/Eco1, in addition to Hrk1. Thus, we have identified a protein-protein interaction module in Pds5 that serves as a chromatin platform for regulating sister-chromatid cohesion and chromosome bi-orientation.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas de Unión al ADN/genética , Canales de Potasio de Rectificación Interna/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Factores de Transcripción/genética , Secuencia de Aminoácidos , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Segregación Cromosómica , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Humanos , Canales de Potasio de Rectificación Interna/química , Canales de Potasio de Rectificación Interna/metabolismo , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Alineación de Secuencia , Factores de Transcripción/química , Factores de Transcripción/metabolismo
10.
Cell Rep ; 17(3): 774-782, 2016 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-27732853

RESUMEN

Axon degeneration is a tightly regulated, self-destructive program that is a critical feature of many neurodegenerative diseases, but the molecular mechanisms regulating this program remain poorly understood. Here, we identify S-phase kinase-associated protein 1A (Skp1a), a core component of a Skp/Cullin/F-box (SCF)-type E3 ubiquitin ligase complex, as a critical regulator of axon degeneration after injury in mammalian neurons. Depletion of Skp1a prolongs survival of injured axons in vitro and in the optic nerve in vivo. We demonstrate that Skp1a regulates the protein level of the nicotinamide adenine dinucleotide (NAD)+ synthesizing enzyme nicotinamide mononucleotide adenylyltransferase 2 (Nmnat2) in axons. Loss of axonal Nmnat2 contributes to a local ATP deficit that triggers axon degeneration. Knockdown of Skp1a elevates basal levels of axonal Nmnat2, thereby delaying axon degeneration through prolonged maintenance of axonal ATP. Consistent with Skp1a functioning through regulation of Nmnat2, Skp1a knockdown fails to protect axons from Nmnat2 knockdown. These results illuminate the molecular mechanism underlying Skp1a-dependent axonal destruction.


Asunto(s)
Axones/enzimología , Axones/patología , Nicotinamida-Nucleótido Adenililtransferasa/metabolismo , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Degeneración Walleriana/enzimología , Degeneración Walleriana/patología , Animales , Células Cultivadas , Metabolismo Energético , Ratones , Nicotinamida-Nucleótido Adenililtransferasa/deficiencia , Nervio Óptico/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patología , Células Receptoras Sensoriales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA