Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Dev Dyn ; 253(4): 404-422, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37850839

RESUMEN

BACKGROUND: Elongation of the spinal cord is dependent on neural development from neuromesodermal progenitors in the tail bud. We previously showed the involvement of the Oct4-type gene, pou5f3, in this process in zebrafish mainly by dominant-interference gene induction, but, to compensate for the limitation of this transgene approach, mutant analysis was indispensable. pou5f3 involvement in the signaling pathways was another unsolved question. RESULTS: We examined the phenotypes of pou5f3 mutants and the effects of Pou5f3 activation by the tamoxifen-ERT2 system in the posterior neural tube, together confirming the involvement of pou5f3. The reporter assays using P19 cells implicated tail bud-related transcription factors in pou5f3 expression. Regulation of tail bud development by retinoic acid (RA) signaling was confirmed by treatment of embryos with RA and the synthesis inhibitor, and in vitro reporter assays further showed that RA signaling regulated pou5f3 expression. Importantly, the expression of the RA degradation enzyme gene, cyp26a1, was down-regulated in embryos with disrupted pou5f3 activity. CONCLUSIONS: The involvement of pou5f3 in spinal cord extension was supported by using mutants and the gain-of-function approach. Our findings further suggest that pou5f3 regulates the RA level, contributing to neurogenesis in the posterior neural tube.


Asunto(s)
Factores de Transcripción , Pez Cebra , Animales , Regulación del Desarrollo de la Expresión Génica , Ácido Retinoico 4-Hidroxilasa/genética , Ácido Retinoico 4-Hidroxilasa/metabolismo , Médula Espinal/metabolismo , Factores de Transcripción/metabolismo , Tretinoina/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
2.
Dev Growth Differ ; 66(3): 219-234, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38378191

RESUMEN

The vertebrate telencephalic lobes consist of the pallium (dorsal) and subpallium (ventral). The subpallium gives rise to the basal ganglia, encompassing the pallidum and striatum. The development of this region is believed to depend on Foxg1/Foxg1a functions in both mice and zebrafish. This study aims to elucidate the genetic regulatory network controlled by foxg1a in subpallium development using zebrafish as a model. The expression gradient of foxg1a within the developing telencephalon was examined semi-quantitatively in initial investigations. Utilizing the CRISPR/Cas9 technique, we subsequently established a foxg1a mutant line and observed the resultant phenotypes. Morphological assessment revealed that foxg1a mutants exhibit a thin telencephalon together with a misshapen preoptic area (POA). Notably, accumulation of apoptotic cells was identified in this region. In mutants at 24 h postfertilization, the expression of pallium markers expanded ventrally, while that of subpallium markers was markedly suppressed. Concurrently, the expression of fgf8a, vax2, and six3b was shifted ventrally, causing anomalous expression in regions typical of POA formation in wild-type embryos. Consequently, the foxg1a mutation led to expansion of the pallium and disrupted the subpallium and POA. This highlights a pivotal role of foxg1a in directing the dorsoventral patterning of the telencephalon, particularly in subpallium differentiation, mirroring observations in mice. Additionally, reduced expression of neural progenitor maintenance genes was detected in mutants, suggesting the necessity of foxg1a in preserving neural progenitors. Collectively, these findings underscore evolutionarily conserved functions of foxg1 in the development of the subpallium in vertebrate embryos.


Asunto(s)
Factores de Transcripción Forkhead , Redes Reguladoras de Genes , Pez Cebra , Animales , Corteza Cerebral/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Telencéfalo/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
3.
Dev Growth Differ ; 66(2): 145-160, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38263801

RESUMEN

Nuclear receptor subfamily 2 group F (Nr2f) proteins are essential for brain development in mice, but little is known about their precise roles and their evolutionary diversification. In the present study, the expression patterns of major nr2f genes (nr2f1a, nr2f1b, and nr2f2) during early brain development were investigated in zebrafish. Comparisons of their expression patterns revealed similar but temporally and spatially distinct patterns after early somite stages in the brain. Frameshift mutations in the three nr2f genes, achieved using the CRISPR/Cas9 method, resulted in a smaller telencephalon and smaller eyes in the nr2f1a mutants; milder forms of those defects were present in the nr2f1b and nr2f2 mutants. Acridine orange staining revealed enhanced cell death in the brain and/or eyes in all nr2f homozygous mutants. The expression of regional markers in the brain did not suggest global defects in brain regionalization; however, shha expression in the preoptic area and hypothalamus, as well as fgf8a expression in the anterior telencephalon, was disturbed in nr2f1a and nr2f1b mutants, potentially leading to a defective telencephalon. Specification of the retina and optic stalk was also significantly affected. The overexpression of nr2f1b by injection of mRNA disrupted the anterior brain at a high dose, and the expression of pax6a in the eyes and fgf8a in the telencephalon at a low dose. The results of these loss- and gain-of-function approaches showed that nr2f genes regulate the development of the telencephalon and eyes in zebrafish embryos.


Asunto(s)
Ojo , Miembro 2 del Grupo F de la Subfamilia 1 de Receptores Nucleares , Receptores Nucleares Huérfanos , Proteínas de Pez Cebra , Pez Cebra , Animales , Ratones , Encéfalo/metabolismo , Ojo/crecimiento & desarrollo , Ojo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Telencéfalo/metabolismo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Receptores Nucleares Huérfanos/metabolismo
4.
Dev Biol ; 472: 1-17, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33358912

RESUMEN

The zebrafish is an excellent model animal that is amenable to forward genetics approaches. To uncover unknown developmental regulatory mechanisms in vertebrates, we conducted chemical mutagenesis screening and identified a novel mutation, kanazutsi (kzt). This mutation is recessive, and its homozygotes are embryonic lethal. Mutant embryos suffered from a variety of morphological defects, such as head flattening, pericardial edema, circulation defects, disrupted patterns of melanophore distribution, dwarf eyes, a defective jaw, and extensive apoptosis in the head, which indicates that the main affected tissues are derived from neural crest cells (NCCs). The expression of tissue-specific markers in kzt mutants showed that the early specification of NCCs was normal, but their later differentiation was severely affected. The mutation was mapped to chromosome 3 by linkage analyses, near cytoglobin 1 (cygb1), the product of which is a globin-family respiratory protein. cygb1 expression was activated during somitogenesis in somites and cranial NCCs in wild-type embryos but was significantly downregulated in mutant embryos, despite the normal primary structure of the gene product. The kzt mutation was phenocopied by cygb1 knockdown with low-dose morpholino oligos and was partially rescued by cygb1 overexpression. Both severe knockdown and null mutation of cygb1, established by the CRISPR/Cas9 technique, resulted in far more severe defects at early stages. Thus, it is highly likely that the downregulation of cygb1 is responsible for many, if not all, of the phenotypes of the kzt mutation. These results reveal a requirement for globin family proteins in vertebrate embryos, particularly in the differentiation and subsequent development of NCCs.


Asunto(s)
Citoglobina/genética , Regulación del Desarrollo de la Expresión Génica , Cresta Neural/citología , Cresta Neural/embriología , Proteínas de Pez Cebra/genética , Pez Cebra/embriología , Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Apoptosis/genética , Sistemas CRISPR-Cas , Diferenciación Celular/genética , Cromosomas/genética , Citoglobina/metabolismo , Desarrollo Embrionario/genética , Expresión Génica , Técnicas de Silenciamiento del Gen , Mutación , Cresta Neural/metabolismo , Fenotipo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
5.
Development ; 146(18)2019 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-31444219

RESUMEN

The presumptive somite boundary in the presomitic mesoderm (PSM) is defined by the anterior border of the expression domain of Tbx6 protein. During somite segmentation, the expression domain of Tbx6 is regressed by Ripply-meditated degradation of Tbx6 protein. Although the expression of zebrafish tbx6 remains restricted to the PSM, the transcriptional regulation of tbx6 remains poorly understood. Here, we show that the expression of zebrafish tbx6 is maintained by transcriptional autoregulation. We find that a proximal-located cis-regulatory module, TR1, which contains two putative T-box sites, is required for somite segmentation in the intermediate body and for proper expression of segmentation genes. Embryos with deletion of TR1 exhibit significant reduction of tbx6 expression at the 12-somite stage, although its expression is initially observed. Additionally, Tbx6 is associated with TR1 and activates its own expression in the anterior PSM. Furthermore, the anterior expansion of tbx6 expression in ripply gene mutants is suppressed in a TR1-dependent manner. The results suggest that the autoregulatory loop of zebrafish tbx6 facilitates immediate removal of Tbx6 protein through termination of its own transcription at the anterior PSM.


Asunto(s)
Tipificación del Cuerpo/genética , Homeostasis/genética , Somitos/embriología , Proteínas de Dominio T Box/metabolismo , Transcripción Genética , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Animales , Sitios de Unión/genética , Embrión no Mamífero/metabolismo , Elementos de Facilitación Genéticos/genética , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Homocigoto , Dominios Proteicos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Somitos/metabolismo , Proteínas de Dominio T Box/química , Proteínas de Dominio T Box/genética , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/genética
6.
Dev Biol ; 457(1): 30-42, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31520602

RESUMEN

In early vertebrate embryos, the dorsal ectoderm is induced by the axial mesendoderm to form the neural plate, which is given competence to form neural cells by soxB1 genes. Subsequently, neurogenesis proceeds in proneural clusters that are generated by a gene network involving proneural genes and Notch signaling. However, what occurs between early neural induction and the later initiation of neurogenesis has not been fully revealed. In the present study, we demonstrated that during gastrulation, the expression of the Oct4-related PouV gene pou5f3 (also called pou2), which is widely observed at earlier stages, was rapidly localized to an array of isolated spotted domains, each of which coincided with individual proneural clusters. Two-color in situ hybridization confirmed that each pou5f3-expressing domain included a proneural cluster. Further analysis demonstrated that anterior pou5f3 domains straddled the boundaries between rhombomere 1 (r1) and r2, whereas posterior domains were included in r4. The effects of forced expression of an inducible negative dominant-interfering pou5f3 gene suggested that pou5f3 activated early proneural genes, such as neurog1 and ebf2, and also soxB1, but repressed the late proneural genes atoh1a and ascl1b. Furthermore, pou5f3 was considered to repress her4.1, a Notch-dependent Hairy/E(spl) gene involved in lateral inhibition in proneural clusters. These results suggest that pou5f3 promotes early neurogenesis in proneural clusters, but negatively regulates later neurogenesis. Suppression of pou5f3 also altered the expression of other her genes, including her3, her5, and her9, further supporting a role for pou5f3 in neurogenesis. In vitro reporter assays in P19 cells showed that pou5f3 was repressed by neurog1, but activated by Notch signaling. These findings together demonstrate the importance of the pou5f3-mediated gene regulatory network in neural development in vertebrate embryos.


Asunto(s)
Placa Neural/embriología , Neurogénesis , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Tipificación del Cuerpo , Embrión no Mamífero/metabolismo , Desarrollo Embrionario , Placa Neural/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Factores de Transcripción SOXB1/genética , Proteínas de Pez Cebra/genética
7.
Dev Growth Differ ; 63(6): 306-322, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34331767

RESUMEN

In vertebrate embryogenesis, elongation of the posterior body is driven by de novo production of the axial and paraxial mesoderm as well as the neural tube at the posterior end. This process is presumed to depend on the stem cell-like population in the tail bud region, but the details of the gene regulatory network involved are unknown. Previous studies suggested the involvement of pou5f3, an Oct4-type POU gene in zebrafish, in axial elongation. In the present study, we first found that pou5f3 is expressed mainly in the dorsal region of the tail bud immediately after gastrulation, and that this expression is restricted to the posterior-most region of the elongating neural tube during somitogenesis. This pou5f3 expression was complementary to the broad expression of sox3 in the neural tube, and formed a sharp boundary with specific expression of tbxta (orthologue of mammalian T/Brachyury) in the tail bud, implicating pou5f3 in the specification of tail bud-derived cells toward neural differentiation in the spinal cord. When pou5f3 was functionally impaired after gastrulation by induction of a dominant-interfering pou5f3 mutant gene (en-pou5f3), trunk and tail elongation were markedly disturbed at distinct positions along the axis depending on the stage. This finding showed involvement of pou5f3 in de novo generation of the body from the tail bud. Conditional functional abrogation also showed that pou5f3 downregulates mesoderm-forming genes but promotes neural development by activating neurogenesis genes around the tail bud. These results suggest that pou5f3 is involved in formation of the posterior spinal cord.


Asunto(s)
Proteínas de Pez Cebra , Pez Cebra , Animales , Desarrollo Embrionario , Mesodermo , Médula Espinal , Pez Cebra/genética , Proteínas de Pez Cebra/genética
8.
J Anat ; 236(4): 622-629, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31840255

RESUMEN

In the vertebrate body, a metameric structure is present along the anterior-posterior axis. Zebrafish tbx6-/- larvae, in which somite boundaries do not form during embryogenesis, were shown to exhibit abnormal skeletal morphology such as rib, neural arch and hemal arch. In this study, we investigated the role of somite patterning in the formation of anterior vertebrae and ribs in more detail. Using three-dimensional computed tomography scans, we found that anterior vertebrae including the Weberian apparatus were severely affected in tbx6-/- larvae. In addition, pleural ribs of tbx6 mutants exhibited severe defects in the initial ossification, extension of ossification, and formation of parapophyses. Two-colour staining revealed that bifurcation of ribs was caused by fusion or branching of ribs in tbx6-/- . The parapophyses in tbx6-/- juvenile fish showed irregular positioning to centra and abnormal attachment to ribs. Furthermore, we found that the ossification of the distal portion of ribs proceeded along myotome boundaries even in irregularly positioned myotome boundaries. These results provide evidence of the contribution of somite patterning to the formation of the Weberian apparatus and rib in zebrafish.


Asunto(s)
Tipificación del Cuerpo/genética , Costillas/embriología , Somitos/enzimología , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente , Regulación del Desarrollo de la Expresión Génica , Costillas/diagnóstico por imagen , Somitos/diagnóstico por imagen , Proteínas de Dominio T Box/genética , Tomografía Computarizada por Rayos X , Pez Cebra/genética , Proteínas de Pez Cebra/genética
9.
Exp Cell Res ; 364(1): 28-41, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29366809

RESUMEN

Zebrafish pou5f3 (previously named pou2), a close homologue of mouse Oct4, encodes a PouV-family transcription factor. pou5f3 has been implicated in diverse aspects of developmental regulation during embryogenesis. In the present study, we addressed the molecular function of Pou5f3 as a transcriptional regulator and the mechanism by which pou5f3 expression is transcriptionally regulated. We examined the influence of effector genes on the expression of the luciferase gene under the control of the upstream 2.1-kb regulatory DNA of pou5f3 (Luc-2.2) in HEK293T and P19 cells. We first confirmed that Pou5f3 functions as a transcriptional activator both in cultured cells and embryos, which confirmed autoregulation of pou5f3 in embryos. It was further shown that Luc-2.2 was activated synergistically by pou5f3 and sox3, which is similar to the co-operative activity of Oct4 and Sox2 in mice, although synergy between pou5f3 and sox2 was less obvious in this zebrafish system. The effects of pou5f3 deletion constructs on the regulation of Luc-2.2 expression revealed different roles for the three subregions of the N-terminal region in Pou5f3 in terms of its regulatory functions and co-operativity with Sox3. Electrophoretic mobility shift assays confirmed that Pou5f3 and Sox3 proteins specifically bind to adjacent sites in the 2.1-kb DNA and that there is an interaction between the two proteins. The synergy with sox3 was unique to pou5f3-the other POU factor genes examined did not show such synergy in Luc-2.2 regulation. Finally, functional interaction was observed between pou5f3 and sox3 in embryos in terms of the regulation of dorsoventral patterning and convergent extension movement. These findings together demonstrate co-operative functions of pou5f3 and sox3, which are frequently coexpressed in early embryos, in the regulation of early development.


Asunto(s)
Embrión no Mamífero/metabolismo , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Factor 3 de Transcripción de Unión a Octámeros/genética , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Embrión no Mamífero/citología , Células HEK293 , Humanos , Técnicas In Vitro , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factores de Transcripción/genética , Pez Cebra/crecimiento & desarrollo , Proteínas de Pez Cebra/metabolismo
10.
Differentiation ; 99: 28-40, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29289755

RESUMEN

During vertebrate brain development, the gastrulation brain homeobox 2 gene (gbx2) is expressed in the forebrain, but its precise roles are still unknown. In this study, we addressed this issue in zebrafish (Danio rerio) first by carefully examining gbx2 expression in the developing forebrain. We showed that gbx2 was expressed in the telencephalon during late somitogenesis, from 18h post-fertilization (hpf) to 24 hpf, and in the thalamic primordium after 26 hpf. In contrast, another gbx gene, gbx1, was expressed in the anterior-most ventral telencephalon after 36 hpf. Thus, the expression patterns of these two gbx genes did not overlap, arguing against their redundant function in the forebrain. Two-color fluorescence in situ hybridization (FISH) showed close relationships between the telencephalic expression of gbx2 and other forebrain-forming genes, suggesting that their interactions contribute to the regionalization of the telencephalon. FISH further revealed that gbx2 is expressed in the ventricular region of the telencephalon. By using transgenic fish in which gbx2 can be induced by heat shock, we found that gbx2 induction at 16 hpf repressed the expression of emx3, dlx2a, and six3b in the ventral telencephalon. Among secreted factor genes, bmp2b and wnt1 were repressed in the vicinity of the gbx2 domain in the telencephalon. The expression of forebrain-forming genes was examined in mutant embryos lacking gbx2, showing emx3 and dlx2a to be upregulated in the subpallium at 24 hpf. Taken together, these findings indicate that gbx2 contributes to the development of the subpallium through its repressive activities against other telencephalon-forming genes. We further showed that inhibiting FGF signaling and activating Wnt signaling repressed gbx2 and affected the regionalization of the telencephalon, supporting a functional link between gbx2, intracellular signaling, and telencephalon development.


Asunto(s)
Gastrulación/genética , Regulación del Desarrollo de la Expresión Génica/genética , Genes Homeobox/genética , Proteínas de Homeodominio/genética , Proteínas de Pez Cebra/genética , Pez Cebra/embriología , Animales , Tipificación del Cuerpo/genética , Neurogénesis/genética , Factores de Transcripción/genética , Pez Cebra/genética
11.
Dev Biol ; 430(1): 237-248, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28756106

RESUMEN

It is well established that the gbx2 homeobox gene contributes to the positioning of the midbrain-hindbrain boundary (MHB) governing the development of adjacent brain regions in vertebrate embryos, but the specific aspects of the gene regulatory network regulated by gbx2 during brain development remain unclear. In the present study, we sought to comprehensively identify gbx2 target genes in zebrafish embryos by microarray analysis around the end of gastrulation, when the MHB is established, using transgenic embryos harboring heat-inducible gbx2. This analysis revealed that a large number of genes were either upregulated or downregulated following gbx2 induction, and the time course of induction differed depending on the genes. The differences in response to gbx2 were found by functional annotation analysis to be related to the functions and structures of the target genes. Among the significantly downregulated genes was her5, whose expression in the midbrain was precisely complementary to gbx2 expression around the MHB, suggesting that gbx2 expression in the anterior hindbrain restricts her5 expression to the midbrain. Because her5 represses neurogenesis, gbx2 may positively regulate neural development in its expression domain. Indeed, we showed further that gbx2 induction upregulated neural marker expression in the midbrain. Quantitative PCR analysis revealed that gbx2 upregulated the expression of the zebrafish proneural gene ebf2, whereas it repressed notch1a, which generally represses neurogenesis. Taken together, these results demonstrate that gbx2 not only functions to position the MHB but also regulates neurogenesis in the anterior hindbrain.


Asunto(s)
Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Neurogénesis/genética , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Encéfalo/embriología , Encéfalo/metabolismo , ADN/metabolismo , Células HEK293 , Proteínas de Homeodominio/genética , Humanos , Hibridación in Situ , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados , Transcripción Genética , Proteínas de Pez Cebra/genética
12.
Dev Biol ; 409(2): 543-54, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26596999

RESUMEN

In vertebrates, the periodic formation of somites from the presomitic mesoderm (PSM) is driven by the molecular oscillator known as the segmentation clock. The hairy-related gene, hes6/her13.2, functions as a hub by dimerizing with other oscillators of the segmentation clock in zebrafish embryos. Although hes6 exhibits a posterior-anterior expression gradient in the posterior PSM with a peak at the tailbud, the detailed mechanisms underlying this unique expression pattern have not yet been clarified. By establishing several transgenic lines, we found that the transcriptional regulatory region downstream of hes6 in combination with the hes6 3'UTR recapitulates the endogenous gradient of hes6 mRNA expression. This downstream region, which we termed the PT enhancer, possessed several putative binding sites for the T-box and Ets transcription factors that were required for the regulatory activity. Indeed, the T-box transcription factor (Tbx16) and Ets transcription factor (Pea3) bound specifically to the putative binding sites and regulated the enhancer activity in zebrafish embryos. In addition, the 3'UTR of hes6 is required for recapitulation of the endogenous mRNA expression. Furthermore, the PT enhancer with the 3'UTR of hes6 responded to the inhibition of retinoic acid synthesis and fibroblast growth factor signaling in a manner similar to endogenous hes6. The results showed that transcriptional regulation by the T-box and Ets transcription factors, combined with the mRNA stability given by the 3'UTR, is responsible for the unique expression gradient of hes6 mRNA in the posterior PSM of zebrafish embryos.


Asunto(s)
Regiones no Traducidas 3'/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Elementos de Facilitación Genéticos/genética , Mesodermo/embriología , Proteínas Represoras/genética , Somitos/embriología , Proteínas de Pez Cebra/genética , Pez Cebra/embriología , Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Sitios de Unión , Tipificación del Cuerpo/genética , Embrión no Mamífero/metabolismo , Factores de Crecimiento de Fibroblastos/farmacología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Genes Reporteros , Proteínas Fluorescentes Verdes/metabolismo , Mesodermo/efectos de los fármacos , Mesodermo/metabolismo , Datos de Secuencia Molecular , Unión Proteica/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Somitos/efectos de los fármacos , Somitos/metabolismo , Cola (estructura animal)/embriología , Tretinoina/farmacología , Proteínas de Pez Cebra/metabolismo
13.
Genomics ; 108(2): 102-7, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27256877

RESUMEN

Chromatin immunoprecipitation (ChIP) against enhancer-associated marks with massive sequencing is a powerful approach to identify genome-wide distributions of putative enhancers. However, functional in vivo analysis is required to elucidate the activities of predicted enhancers. Using zebrafish embryos, we established a ChIP-Injection method that enables identification of functional enhancers based on their enhancer activities in embryos. Each reporter gene possessing the enhancer-associated genomic region enriched by ChIP was injected into zebrafish embryos to analyze the activity of putative enhancers. By using the ChIP-Injection, we identified 32 distinct putative enhancers that drove specific expression. Additionally, we generated transgenic lines that exhibit distributions of the EGFP signal as was observed in the screening. Furthermore, the expression pattern driven by the identified somite-specific enhancer resembled that of the gene acta2. The results indicate that ChIP-Injection provides an efficient approach for identification of active enhancers in a potentially wide variety of developmental tissues and stages.


Asunto(s)
Inmunoprecipitación de Cromatina/métodos , Elementos de Facilitación Genéticos , Pez Cebra/embriología , Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Genómica , Proteínas Fluorescentes Verdes/genética , Regiones Promotoras Genéticas
14.
Cells Dev ; 179: 203933, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38908828

RESUMEN

Using a transgenic zebrafish line harboring a heat-inducible dominant-interference pou5f3 gene (en-pou5f3), we reported that this PouV gene is involved in isthmus development at the midbrain-hindbrain boundary (MHB), which patterns the midbrain and cerebellum. Importantly, the functions of pou5f3 reportedly differ before and after the end of gastrulation. In the present study, we examined in detail the effects of en-pou5f3 induction on isthmus development during embryogenesis. When en-pou5f3 was induced around the end of gastrulation (bud stage), the isthmus was abrogated or deformed by the end of somitogenesis (24 hours post-fertilization). At this stage, the expression of MHB markers -- such as pax2a, fgf8a, wnt1, and gbx2 -- was absent in embryos lacking the isthmus structure, whereas it was present, although severely distorted, in embryos with a deformed isthmus. We further found that, after en-pou5f3 induction at late gastrulation, pax2a, fgf8a, and wnt1 were immediately and irreversibly downregulated, whereas the expression of en2a and gbx2 was reduced only weakly and slowly. Induction of en-pou5f3 at early somite stages also immediately downregulated MHB genes, particularly pax2a, but their expression was restored later. Overall, the data suggested that pou5f3 directly upregulates at least pax2a and possibly fgf8a and wnt1, which function in parallel in establishing the MHB, and that the role of pou5f3 dynamically changes around the end of gastrulation. We next examined the transcriptional regulation of pax2a using both in vitro and in vivo reporter analyses; the results showed that two upstream 1.0-kb regions with sequences conserved among vertebrates specifically drove transcription at the MHB. These reporter analyses confirmed that development of the isthmic organizer is regulated by PouV through direct regulation of pax2/pax2a in vertebrate embryos.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Factor de Transcripción PAX2 , Proteínas de Pez Cebra , Pez Cebra , Animales , Pez Cebra/genética , Pez Cebra/embriología , Pez Cebra/metabolismo , Factor de Transcripción PAX2/metabolismo , Factor de Transcripción PAX2/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Gastrulación/genética , Animales Modificados Genéticamente , Proteína Wnt1/genética , Proteína Wnt1/metabolismo , Embrión no Mamífero/metabolismo , Factores del Dominio POU/genética , Factores del Dominio POU/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Desarrollo Embrionario/genética , Mesencéfalo/metabolismo , Mesencéfalo/embriología , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Somitos/metabolismo , Somitos/embriología , Factores de Crecimiento de Fibroblastos
15.
Environ Sci Pollut Res Int ; 30(29): 73393-73404, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37188935

RESUMEN

In the present study, we determined the developmental toxicity of endosulfan at an elevated ambient temperature using the zebrafish animal model. Zebrafish embryos of various developmental stages were exposed to endosulfan through E3 medium, raised under two selected temperature conditions (28.5 °C and an elevated temperature of 35 °C), and monitored under the microscope. Zebrafish embryos of very early developmental stages (cellular cleavage stages, such as the 64-cell stage) were highly sensitive to the elevated temperature as 37.5% died and 47.5% developed into amorphous type, while only 15.0% of embryos developed as normal embryos without malformation. Zebrafish embryos that were exposed concurrently to endosulfan and an elevated temperature showed stronger developmental defects (arrested epiboly progress, shortened body length, curved trunk) compared to the embryos exposed to either endosulfan or an elevated temperature. The brain structure of the embryos that concurrently were exposed to the elevated temperature and endosulfan was either incompletely developed or malformed. Furthermore, the stress-implicated genes hsp70, p16, and smp30 regulations were synergistically affected by endosulfan treatment under the elevated thermal condition. Overall, the elevated ambient temperature synergistically enhanced the developmental toxicity of endosulfan in zebrafish embryos.


Asunto(s)
Endosulfano , Pez Cebra , Animales , Endosulfano/toxicidad , Temperatura , Desarrollo Embrionario , Embrión no Mamífero/anomalías
16.
Dev Biol ; 350(1): 154-68, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-20969843

RESUMEN

Zebrafish hoxb1b is expressed during epiboly in the posterior neural plate, with its anterior boundary at the prospective r4 region providing a positional cue for hindbrain formation. A similar function and expression is known for Hoxa1 in mice, suggesting a shared regulatory mechanism for hindbrain patterning in vertebrate embryos. To understand the evolution of the regulatory mechanisms of key genes in patterning of the central nervous system, we examined how hoxb1b transcription is regulated in zebrafish embryos and compared the regulatory mechanisms between mammals and teleosts that have undergone an additional genome duplication. By promoter analysis, we found that the expression of the reporter gene recapitulated hoxb1b expression when driven in transgenic embryos by a combination of the upstream 8.0-kb DNA and downstream 4.6-kb DNA. Furthermore, reporter expression expanded anteriorly when transgenic embryos were exposed to retinoic acid (RA) or LiCl, or injected with fgf3/8 mRNA, implicating the flanking DNA examined here in the responsiveness of hoxb1b to posteriorizing signals. We further identified at least two functional RA responsive elements in the downstream DNA that were shown to be major regulators of early hoxb1b expression during gastrulation, while the upstream DNA, which harbors repetitive sequences with apparent similarity to the autoregulatory sequence of mouse Hoxb1, contributed only to later hoxb1b expression, during somitogenesis. Possible implications in vertebrate evolution are discussed based on these findings.


Asunto(s)
Tipificación del Cuerpo , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Rombencéfalo/embriología , Tretinoina/metabolismo , Animales , Secuencia de Bases , Secuencia Conservada , Factores de Crecimiento de Fibroblastos/metabolismo , Gastrulación , Ratones , Datos de Secuencia Molecular , Placa Neural/embriología , Placa Neural/metabolismo , Regiones Promotoras Genéticas/efectos de los fármacos , Ratas , Receptores de Ácido Retinoico/metabolismo , Receptores X Retinoide/metabolismo , Rombencéfalo/metabolismo , Transcripción Genética , Tretinoina/farmacología , Proteínas Wnt/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/metabolismo
17.
Dev Growth Differ ; 54(7): 686-701, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22913532

RESUMEN

Zebrafish pou2, encoding the class V POU transcription factor orthologous to mouse Oct-3/4, has been implicated in different aspects of development, such as dorsoventral patterning, endoderm formation, and brain regionalization, by analyzing pou2 mutant embryos. In the present study, we first conducted overexpression of pou2-modified genes by mRNA injection, and found that pou2 and its active form (vp-pou2) augmented mesoderm formation and suppressed endoderm specification, whereas repressive pou2 (en-pou2) affected the formation of the mesoderm and endoderm in a different manner. To avoid complications that might arise from different pou2 functions during the course of development, we used a transgenic line harboring inducible en-pou2 (HEP), which could function in a dominant-negative manner. We found that suppressing endogenous pou2 by HEP induction at the mid-blastula stage enhanced endoderm development at the expense of mesoderm, whereas the same treatment in the late blastulae promoted mesoderm formation and suppressed the endoderm specification. Further analyses using HEP induction revealed that, from late epiboly to early somitogenesis, pou2 regulated additional developmental aspects, such as brain regionalization, heart development, and tail formation. Our findings suggest that Pou2 functions in multiple aspects of vertebrate development, especially in the binary decision of the mesendoderm to mesoderm and endoderm in different ways depending on the developmental stage.


Asunto(s)
Desarrollo Embrionario/fisiología , Mesodermo/embriología , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Organogénesis/fisiología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Blástula/citología , Blástula/metabolismo , Endodermo/citología , Endodermo/embriología , Mesodermo/citología , Ratones , Mutación , Factor 3 de Transcripción de Unión a Octámeros/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
18.
Zoolog Sci ; 29(2): 79-82, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22303847

RESUMEN

We previously reported that thyroid hormones are involved in the formation of the adult rudiment and adult-type skeleton in sea urchin larvae, as well as in the resorption of larval tissues. In the present study, to search for the presence of thyroid hormone receptor in sea urchin larvae, we performed a ligand-binding assay between radiolabeled thyroid hormones and nuclear extracts from the larvae of the sea urchin Hemicentrotus pulcherrimus. The presence of binding sites with a high affinity to thyroxine (T4) was detected in the nuclear extract, but not in the cytoplasmic fraction. The dissociation constants for the T4 binding to the nuclear extracts were estimated to be about 18 pM from the mesenchyme-blastula stage to the four-armed pluteus stage. The quantity of T4 binding sites in the nuclear extracts increased during larval development. These results suggest that the binding affinity to T4 in the nuclear extracts was caused by a putative nuclear thyroid hormone receptor in sea urchin larvae.


Asunto(s)
Hemicentrotus/metabolismo , Receptores de Hormona Tiroidea/metabolismo , Tiroxina/metabolismo , Animales , Larva/fisiología , Unión Proteica , Receptores de Hormona Tiroidea/química , Tiroxina/química
19.
Genesis ; 48(12): 707-16, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20960516

RESUMEN

The expression of all four fgfr genes was extensively examined throughout early embryogenesis of the zebrafish (Danio rerio). fgfr1 alone was expressed maternally throughout the blastoderm, and then zygotically in the anterior neural plate and presomitic mesoderm. fgfr4 expression was first detected in late blastulae and was gradually restricted to the brain. fgfr2 and fgfr3 expression were initiated in early and late gastrulae, respectively; fgfr2 was expressed in the anterior neural plate and somitic mesoderm, whereas fgfr3 was activated in the axial mesoderm and then in the midbrain and somitic mesoderm. During somitogenesis, each of these fgfr genes was expressed in a characteristic manner in the brain. Using an FGF signal inhibitor, dominant-negative FGF receptors and fgf8.1/fgf8a mutants, we found that fgfr expression is directly or indirectly regulated by FGF signaling during epiboly and at the end of somitogenesis, revealing the presence of an autoregulatory mechanism.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Receptores de Factores de Crecimiento de Fibroblastos/genética , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal , Pez Cebra/embriología , Animales , Encéfalo/embriología , Embrión no Mamífero/embriología , Factores de Crecimiento de Fibroblastos/metabolismo
20.
Dev Biol ; 316(2): 471-86, 2008 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-18280464

RESUMEN

Fgf8 is expressed in the isthmic region of the developing brain, serving an organizing function in vertebrate embryos. We previously identified S4.2 downstream to the zebrafish fgf8 gene as a regulatory region that drives transcription in the anterior hindbrain. Here, we investigated the mechanism of fgf8 regulation by the S4.2 region during development. Reporter analyses in embryos revealed that S4.2 closely recapitulates fgf8 expression in the anteriormost hindbrain during somitogenesis. This region contains a sequence highly conserved in fgf8 of diverse vertebrates. Further analyses of S4.2 revealed a 342-bp core region composed of three subregions (#2, #3, and #4). Regions #3 and #4 drove expression broadly in the brain from the midbrain to r5 of the hindbrain, whereas a 28-bp sequence in #2 repressed ectopic expression in the midbrain and in r2 to r5. The enhancer function of S4.2 was absent in pax2a mutant embryos, while it was activated ectopically by pax2a misexpression in the hindbrain. We identified two sites in the core region that are bound by Pax2a in vitro and in vivo, the disruption of which abrogated the S4.2 activity. Thus, fgf8 expression in the anteriormost hindbrain involves activation and repression, with Pax2a as a pivotal regulator.


Asunto(s)
Embrión no Mamífero/anatomía & histología , Factores de Crecimiento de Fibroblastos/genética , Mesencéfalo/embriología , Rombencéfalo/embriología , Transcripción Genética , Proteínas de Pez Cebra/genética , Pez Cebra/embriología , Animales , Secuencia de Bases , Cartilla de ADN , Amplificación de Genes , Mesencéfalo/anatomía & histología , Secuencias Reguladoras de Ácidos Nucleicos , Rombencéfalo/anatomía & histología , Pez Cebra/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA