Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Cell ; 71(2): 306-318.e7, 2018 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-30017583

RESUMEN

DNA N6-methyladenine (6mA) modification is the most prevalent DNA modification in prokaryotes, but whether it exists in human cells and whether it plays a role in human diseases remain enigmatic. Here, we showed that 6mA is extensively present in the human genome, and we cataloged 881,240 6mA sites accounting for ∼0.051% of the total adenines. [G/C]AGG[C/T] was the most significantly associated motif with 6mA modification. 6mA sites were enriched in the coding regions and mark actively transcribed genes in human cells. DNA 6mA and N6-demethyladenine modification in the human genome were mediated by methyltransferase N6AMT1 and demethylase ALKBH1, respectively. The abundance of 6mA was significantly lower in cancers, accompanied by decreased N6AMT1 and increased ALKBH1 levels, and downregulation of 6mA modification levels promoted tumorigenesis. Collectively, our results demonstrate that DNA 6mA modification is extensively present in human cells and the decrease of genomic DNA 6mA promotes human tumorigenesis.


Asunto(s)
Adenina/análogos & derivados , Histona H2a Dioxigenasa, Homólogo 1 de AlkB/metabolismo , Genoma Humano , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/metabolismo , Adenina/metabolismo , Histona H2a Dioxigenasa, Homólogo 1 de AlkB/genética , Animales , Carcinogénesis/genética , ADN/genética , Metilación de ADN , Xenoinjertos , Humanos , Ratones , Ratones Desnudos , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/genética
2.
Mol Cell ; 68(1): 171-184.e6, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28985503

RESUMEN

A substantial fraction of eukaryotic transcripts are considered long non-coding RNAs (lncRNAs), which regulate various hallmarks of cancer. Here, we discovered that the lncRNA HOXB-AS3 encodes a conserved 53-aa peptide. The HOXB-AS3 peptide, not lncRNA, suppresses colon cancer (CRC) growth. Mechanistically, the HOXB-AS3 peptide competitively binds to the ariginine residues in RGG motif of hnRNP A1 and antagonizes the hnRNP A1-mediated regulation of pyruvate kinase M (PKM) splicing by blocking the binding of the ariginine residues in RGG motif of hnRNP A1 to the sequences flanking PKM exon 9, ensuring the formation of lower PKM2 and suppressing glucose metabolism reprogramming. CRC patients with low levels of HOXB-AS3 peptide have poorer prognoses. Our study indicates that the loss of HOXB-AS3 peptide is a critical oncogenic event in CRC metabolic reprogramming. Our findings uncover a complex regulatory mechanism of cancer metabolism reprogramming orchestrated by a peptide encoded by an lncRNA.


Asunto(s)
Transformación Celular Neoplásica/genética , Neoplasias del Colon/genética , Regulación Neoplásica de la Expresión Génica , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/genética , Péptidos/genética , ARN Largo no Codificante/genética , Empalme Alternativo , Secuencias de Aminoácidos , Animales , Unión Competitiva , Línea Celular Tumoral , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Exones , Células HeLa , Ribonucleoproteína Nuclear Heterogénea A1 , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Xenoinjertos , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Péptidos/antagonistas & inhibidores , Péptidos/metabolismo , Unión Proteica , Mapeo de Interacción de Proteínas , Piruvato Quinasa/genética , Piruvato Quinasa/metabolismo , ARN Largo no Codificante/antagonistas & inhibidores , ARN Largo no Codificante/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal
3.
Mol Ther ; 27(10): 1718-1725, 2019 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-31526596

RESUMEN

Non-coding RNAs (ncRNAs) are unique RNA transcripts that have been widely identified in the eukaryotic genome and have been shown to play key roles in the development of many cancers. However, the rapid development of genome-wide translation profiling and ribosome profiling has revealed that a small number of small open reading frames (sORFs) within ncRNAs actually have peptide- or protein-coding potential. The peptides or proteins encoded by ncRNA (HOXB-AS3, encoded by long ncRNA [lncRNA]; FBXW7-185aa, PINT-87aa, and SHPRH-146aa, encoded by circular RNA [circRNA]; and miPEP-200a and miPEP-200b, encoded by primary miRNAs) have been shown to be critical players in cancer development and progression, through effects upon the regulation of glucose metabolism, the epithelial-to-mesenchymal transition, and the ubiquitination pathway. In this review, we summarize the reported peptides or proteins encoded by ncRNAs in cancer and explore the application of these peptides or proteins in the development of anti-tumor drugs and the identification of relevant therapeutic targets and tumor biomarkers.


Asunto(s)
Redes Reguladoras de Genes , Neoplasias/genética , ARN no Traducido/metabolismo , Progresión de la Enfermedad , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Glucosa/metabolismo , Humanos , Neoplasias/metabolismo , Péptidos/genética , Proteínas/genética , Ubiquitinación
4.
Mol Ther ; 27(6): 1114-1125, 2019 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-30962163

RESUMEN

By fusing the extracellular domain of the natural killer (NK) cell receptor NKG2D to DAP12, we constructed a chimeric antigen receptor (CAR) to improve NK cell tumor responses. An RNA electroporation approach that provides transient expression of the CAR was adopted as a risk mitigation strategy. Expression of the NKG2D RNA CAR significantly augmented the cytolytic activity of NK cells against several solid tumor cell lines in vitro and provided a clear therapeutic benefit to mice with established solid tumors. Three patients with metastatic colorectal cancer were then treated with local infusion of the CAR-NK cells. Reduction of ascites generation and a marked decrease in number of tumor cells in ascites samples were observed in the first two patients treated with intraperitoneal infusion of low doses of the CAR-NK cells. The third patient with metastatic tumor sites in the liver was treated with ultrasound-guided percutaneous injection, followed by intraperitoneal infusion of the CAR-NK cells. Rapid tumor regression in the liver region was observed with Doppler ultrasound imaging and complete metabolic response in the treated liver lesions was confirmed by positron emission tomography (PET)- computed tomographic (CT) scanning. Our results highlight a promising therapeutic potential of using RNA CAR-modified NK cells to treat metastatic colorectal cancer.


Asunto(s)
Traslado Adoptivo/métodos , Trasplante de Células/métodos , Neoplasias Colorrectales/terapia , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/trasplante , Subfamilia K de Receptores Similares a Lectina de Células NK/genética , Receptores Quiméricos de Antígenos/inmunología , Traslado Adoptivo/efectos adversos , Animales , Ingeniería Celular/métodos , Trasplante de Células/efectos adversos , Neoplasias Colorrectales/mortalidad , Neoplasias Colorrectales/patología , Citotoxicidad Inmunológica/genética , Estudios de Factibilidad , Femenino , Vectores Genéticos , Células HCT116 , Humanos , Células Asesinas Naturales/metabolismo , Activación de Linfocitos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Persona de Mediana Edad , Proyectos Piloto , ARN Mensajero/genética , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
5.
AAPS PharmSciTech ; 21(1): 6, 2019 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-31754916

RESUMEN

The aim of the study is to investigate the feasibility of fabricating FDM 3D-printed gastric floating tablets with low infill percentages and the effect of infill percentage on the properties of gastric floating tablets in vitro. Propranolol hydrochloride was selected as a model drug, and drug-loaded polyvinyl alcohol (PVA) filaments were produced by hot melt extrusion (HME). Ellipsoid-shaped gastric floating tablets with low infill percentage of 15% and 25% (namely E-15 and E-25) were then prepared respectively by feeding the extruded filaments to FDM 3D printer. Thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray powder diffraction (XRD), and scanning electron microscopy (SEM) were employed to characterize the filaments and 3D-printed tablets, and a series of evaluations were performed to the 3D-printed tablets, including the weight variation, drug content, hardness, in vitro floating behavior, and drug release of the tablets. The SEM results showed that the drug-loaded filaments and 3D-printed tablets appeared intact without defects, and the printed tablets were composed of filaments deposited uniformly layer by layer. The model drug and the excipients were thermally stable under the process temperature of extruding and printing, with a small amount of drug crystals dispersing in the drug-loaded filaments and 3D-printed tablets. Both E-15 and E-25 could float on artificial gastric fluids without any lag time and released in a sustained manner. Compared with E-15, the E-25 presented less weight variation, higher tablet hardness, shorter floating time, and longer drug release time.


Asunto(s)
Portadores de Fármacos/síntesis química , Excipientes/síntesis química , Impresión Tridimensional , Comprimidos/síntesis química , Tecnología Farmacéutica/métodos , Rastreo Diferencial de Calorimetría/métodos , Portadores de Fármacos/farmacocinética , Liberación de Fármacos , Excipientes/farmacocinética , Alcohol Polivinílico/síntesis química , Alcohol Polivinílico/farmacocinética , Propranolol/síntesis química , Propranolol/farmacocinética , Comprimidos/farmacocinética , Difracción de Rayos X/métodos
7.
J Pathol ; 239(2): 186-96, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26969828

RESUMEN

The tricho-rhino-phalangeal syndrome 1 gene (TRPS1), which was initially found to be associated with tricho-rhino-phalangeal syndrome, is critical for the development and differentiation of bone, hair follicles and kidney. However, its role in cancer progression is largely unknown. In this study, we demonstrated that down-regulation of TRPS1 correlated with distant metastasis, tumour recurrence and poor survival rate in cancer patients. TRPS1 was frequently down-regulated in high-metastatic cancer cell lines from the breast, colon and nasopharynx. Silencing of TRPS1 stimulated epithelial-mesenchymal transition (EMT), migration and invasion in vitro and metastasis in vivo, while TRPS1 over-expression exhibited the opposite effects. Using quantitative proteomics, FOXA1, a negative regulator of epithelial-mesenchymal transition (EMT), was shown to be down-regulated by TRPS1 knockdown. Ectopic expression of FOXA1 blocked the enhancement of EMT, migration and invasion induced by TRPS1 silencing. Mechanistically, TRPS1, acting as a transcription activator, directly induced FOXA1 transcription by binding to the FOXA1 promoter. We further showed that down-regulation of TRPS1 was induced by miR-373 binding to the 3' UTR of TRPS1. Over-expression of TRPS1, but not TRPS1 3' UTR, blocked the enhancement of migration and invasion induced by miR-373. Taken together, we consider that down-regulation of TRPS1 by miR-373, acting as a transcriptional activator, promotes EMT and metastasis by repressing FOXA1 transcription, expanding upon its previously reported role as a transcription repressor. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias del Colon/genética , Proteínas de Unión al ADN/metabolismo , Factor Nuclear 3-alfa del Hepatocito/genética , MicroARNs/genética , Neoplasias Nasofaríngeas/genética , Factores de Transcripción/metabolismo , Regiones no Traducidas 3'/genética , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Diferenciación Celular , Línea Celular Tumoral , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Proteínas de Unión al ADN/genética , Regulación hacia Abajo , Transición Epitelial-Mesenquimal , Femenino , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Factor Nuclear 3-alfa del Hepatocito/metabolismo , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patología , Invasividad Neoplásica , Metástasis de la Neoplasia , Proteínas Represoras , Factores de Transcripción/genética
8.
Bioinformatics ; 31(4): 608-9, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25677125

RESUMEN

SUMMARY: Disease ontology (DO) annotates human genes in the context of disease. DO is important annotation in translating molecular findings from high-throughput data to clinical relevance. DOSE is an R package providing semantic similarity computations among DO terms and genes which allows biologists to explore the similarities of diseases and of gene functions in disease perspective. Enrichment analyses including hypergeometric model and gene set enrichment analysis are also implemented to support discovering disease associations of high-throughput biological data. This allows biologists to verify disease relevance in a biological experiment and identify unexpected disease associations. Comparison among gene clusters is also supported. AVAILABILITY AND IMPLEMENTATION: DOSE is released under Artistic-2.0 License. The source code and documents are freely available through Bioconductor (http://www.bioconductor.org/packages/release/bioc/html/DOSE.html). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. CONTACT: gcyu@connect.hku.hk or tqyhe@jnu.edu.cn.


Asunto(s)
Biología Computacional/métodos , Enfermedad/genética , Ontología de Genes , Lenguajes de Programación , Semántica , Programas Informáticos , Bases de Datos Genéticas , Humanos , Familia de Multigenes
9.
J Pathol ; 236(2): 175-85, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25678401

RESUMEN

Amplification of the activated Cdc42-associated kinase 1 (ACK1) gene is frequent in gastric cancer (GC). However, little is known about the clinical roles and molecular mechanisms of ACK1 abnormalities in GC. Here, we found that the ACK1 protein level and ACK1 phosphorylation at Tyr 284 were frequently elevated in GC and associated with poor patient survival. Ectopic ACK1 expression in GC cells induced epithelial-mesenchymal transition (EMT) and promoted migration and invasion in vitro, and metastasis in vivo; the depletion of ACK1 induced the opposite effects. We utilized SILAC quantitative proteomics to discover that the level of the cell cycle-related protein ecdysoneless homologue (ECD) was markedly altered by ACK1. Overexpression of ECD promoted EMT, migration, and invasion in GC, similar to the effects of ACK1 overexpression. Silencing of ECD completely blocked the augmentation of ACK1 overexpression-induced EMT, migration, and invasion. Mechanistically, ACK1 phosphorylated AKT at Thr 308 and Ser 473 and activated the AKT pathway to up-regulate the transcription factor POU2F1, which directly bound to the promoter region of its novel target gene ECD and thus regulated ECD expression in GC cells. Furthermore, the phosphorylation levels of AKT at Thr 308 and Ser 473 and POU2F1 and ECD levels were positively associated with ACK1 levels in clinical GC specimens. Collectively, we have demonstrated that ACK1 promotes EMT, migration, and invasion by activating AKT-POU2F1-ECD signalling in GC cells. ACK1 may be employed as a new prognostic factor and therapeutic target for GC.


Asunto(s)
Proteínas Portadoras/metabolismo , Transición Epitelial-Mesenquimal/fisiología , Factor 1 de Transcripción de Unión a Octámeros/metabolismo , Proteínas Tirosina Quinasas/fisiología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias Gástricas/fisiopatología , Adulto , Anciano , Animales , Comunicación Celular/fisiología , Línea Celular Tumoral , Femenino , Técnicas de Silenciamiento del Gen , Xenoinjertos , Humanos , Masculino , Ratones Endogámicos NOD , Ratones SCID , Persona de Mediana Edad , Invasividad Neoplásica , Metástasis de la Neoplasia , Trasplante de Neoplasias , Pronóstico , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal/fisiología , Neoplasias Gástricas/metabolismo , Regulación hacia Arriba
10.
BMC Cancer ; 14: 243, 2014 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-24708550

RESUMEN

BACKGROUND: Nasopharyngeal carcinoma (NPC) is a highly invasive and metastatic cancer. N,N'-dinitrosopiperazine (DNP), a carcinogen with specificity for nasopharyngeal epithelium, facilitates NPC metastasis. However, the underlying mechanism is not known. METHODS: Quantitative phosphoproteomics, using stable isotope labeling of amino acids in cell cultures, was employed to identify phosphoproteins associated with NPC metastasis mediated by DNP. NPC cell line 6-10B, which is relatively less metastatic, was used to investigate DNP-mediated metastasis. Boyden chamber invasion assay was used to measure DNP-induced motility and invasion, and nude mice were used to verify DNP-mediated metastasis in vivo. Several different phosphoproteins detected by proteomics analysis were verified by immunoblotting. DNP-mediated metastasis facilitated by lysine-rich CEACAM1 co-isolated protein (LYRIC) phosphorylation at serine 568 was confirmed using mutations targeting the phosphorylation site of LYRIC. DNP-mediated metastasis through LYRIC phosphorylation was confirmed in the NPC cell line CNE1. DNP-mediated LYRIC phosphorylation at serine 568 was also verified in metastatic tumors of BABL/c nude mice. RESULTS: Boyden chamber invasion assay indicated that DNP mediated cell motility and invasion of NPC cell 6-10B in vitro, and experiments with nude mice indicated that DNP increased 6-10B metastasis in vivo. In the phosphoproteomics analysis, we detected 216 phosphorylation sites on 130 proteins; among these, 48 phosphorylation sites on 30 unique phosphopeptides were modulated by DNP by at least 1.5-fold. DNP mediated the expression of phosphorylated GTPase, ferritin, LYRIC, and RNA polymerase, and it decreased the expression of phosphorylated torsin-1A protein 1. Furthermore, DNP induced LYRIC phosphorylation at serine 568 to facilitate cell motility and invasion, whereas DNP-mediated motility and invasion was decreased when serine 568 in LYRIC was mutated. In another NPC cell line, CNE1, DNP also mediated cell motility and invasion followed by enhanced phosphorylation of LYRIC at serine 568. Finally, phosphorylated-LYRIC expression at serine 568 was significantly increased in metastatic tumors induced by DNP. CONCLUSION: DNP regulates multiple signaling pathways through protein phosphorylation, including the phosphorylation of LYRIC at serine 568, and mediates NPC metastasis. These findings provide insights on the complexity and dynamics of DNP-facilitated metastasis, and may help to gain a better understanding of the mechanisms by clarifying NPC-induced metastasis.


Asunto(s)
Neoplasias Nasofaríngeas/genética , Nitrosaminas/toxicidad , Fosfoproteínas/biosíntesis , Proteómica , Animales , Carcinoma , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Marcaje Isotópico , Ratones , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/patología , Invasividad Neoplásica/genética , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/patología , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Int J Mol Sci ; 15(11): 20054-71, 2014 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-25375189

RESUMEN

N,N'-dinitrosopiperazine (DNP) with organ specificity for nasopharyngeal epithelium, is involved in nasopharyngeal carcinoma (NPC) metastasis, though its mechanism is unclear. To reveal the pathogenesis of DNP-induced metastasis, immunoprecipitation was used to identify DNP-mediated phosphoproteins. DNP-mediated NPC cell line (6-10B) motility and invasion was confirmed. Twenty-six phosphoproteins were increased at least 1.5-fold following DNP exposure. Changes in the expression levels of selected phosphoproteins were verified by Western-blotting analysis. DNP treatment altered the phosphorylation of ezrin (threonine 567), vimentin (serine 55), stathmin (serine 25) and STAT3 (serine 727). Furthermore, it was shown that DNP-dependent metastasis is mediated in part through ezrin at threonine 567, as DNP-mediated metastasis was decreased when threonine 567 of ezrin was mutated. Strikingly, NPC metastatic tumors exhibited a higher expression of phosphorylated-ezrin at threonine 567 than the primary tumors. These findings provide novel insight into DNP-induced NPC metastasis and may contribute to a better understanding of the metastatic mechanisms of NPC tumors.


Asunto(s)
Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patología , Nitrosaminas/toxicidad , Fosfoproteínas/metabolismo , Western Blotting , Carcinoma , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proteínas del Citoesqueleto/metabolismo , Electroforesis en Gel Bidimensional , Humanos , Espectrometría de Masas , Carcinoma Nasofaríngeo , Invasividad Neoplásica , Metástasis de la Neoplasia , Nitrosaminas/química , Fosforilación/efectos de los fármacos , Fosfotreonina/metabolismo , Proteómica , Reproducibilidad de los Resultados
12.
Front Med ; 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38907157

RESUMEN

RNA modification is an essential component of the epitranscriptome, regulating RNA metabolism and cellular functions. Several types of RNA modifications have been identified to date; they include N6-methyladenosine (m6A), N1-methyladenosine (m1A), 5-methylcytosine (m5C), N7-methylguanosine (m7G), N6,2'-O-dimethyladenosine (m6Am), N4-acetylcytidine (ac4C), etc. RNA modifications, mediated by regulators including writers, erasers, and readers, are associated with carcinogenesis, tumor microenvironment, metabolic reprogramming, immunosuppression, immunotherapy, chemotherapy, etc. A novel perspective indicates that regulatory subunits and post-translational modifications (PTMs) are involved in the regulation of writer, eraser, and reader functions in mediating RNA modifications, tumorigenesis, and anticancer therapy. In this review, we summarize the advances made in the knowledge of different RNA modifications (especially m6A) and focus on RNA modification regulators with functions modulated by a series of factors in cancer, including regulatory subunits (proteins, noncoding RNA or peptides encoded by long noncoding RNA) and PTMs (acetylation, SUMOylation, lactylation, phosphorylation, etc.). We also delineate the relationship between RNA modification regulator functions and carcinogenesis or cancer progression. Additionally, inhibitors that target RNA modification regulators for anticancer therapy and their synergistic effect combined with immunotherapy or chemotherapy are discussed.

13.
Proteomics ; 13(21): 3222-32, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23970500

RESUMEN

Isolated from Elephantopus scaber L., a Chinese medicinal herb that is widely used to prevent and treat cancers in China, isodeoxyelephantopin (ESI) exerted antitumor effects on several cancer cells. However, its antitumor mechanism is still not clear. In this study, we found that ESI could induce G2/M arrest and subsequently stimulate cell apoptosis in dose- and time-dependent manners. We used SILAC quantitative proteomics to identify ESI-regulated proteins in cancer cells, and found that 124 proteins were significantly altered in expression. Gene ontology and Ingenuity Pathway Analysis revealed that these proteins were mainly involved in the regulation of oxidative stress and inflammation response. Functional studies demonstrated that ESI induced G2/M arrest and apoptosis by inducing ROS generation, and that antioxidant N-acetyl-l-cysteine could block the ESI-induced antitumor effects. Accumulated ROS resulted in DNA breakage, subsequent G2/M arrest and mitochondrial-mediated apoptosis. ESI upregulated the expression of anticancer inflammation factors IL-12a, IFN-α, and IFN-ß through ROS-dependent and independent pathways. The current work reveals that ESI exerts its antitumor effects through ROS-dependent DNA damage, mitochondrial-mediated apoptosis mechanism and antitumor inflammation factor pathway.


Asunto(s)
Antineoplásicos/farmacología , Lactonas/farmacología , Neoplasias Nasofaríngeas/metabolismo , Proteoma/efectos de los fármacos , Proteómica/métodos , Sesquiterpenos/farmacología , Apoptosis/efectos de los fármacos , Carcinoma , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Citocinas/análisis , Citocinas/metabolismo , Humanos , Carcinoma Nasofaríngeo , Mapas de Interacción de Proteínas , Proteoma/análisis , Proteoma/química
14.
Proteomics ; 13(1): 169-78, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23161516

RESUMEN

Andrographolide-lipoic acid conjugate (AL-1) is a new in-house synthesized chemical entity, which was derived by covalently linking andrographolide with lipoic acid. However, its anti-cancer effect and cytotoxic mechanism remains unknown. In this study, we found that AL-1 could significantly inhibit cell viability of human leukemia K562 cells by inducing G2/M arrest and apoptosis in a dose-dependent manner. Thirty-one AL-1-regulated protein alterations were identified by proteomics analysis. Gene ontology and ingenuity pathway analysis revealed that a cluster of proteins of oxidative redox state and apoptotic cell death-related proteins, such as PRDX2, PRDX3, PRDX6, TXNRD1, and GLRX3, were regulated by AL-1. Functional studies confirmed that AL-1 induced apoptosis of K562 cells through a ROS-dependent mechanism, and anti-oxidant, N-acetyl-L-cysteine, could completely block AL-1-induced cytotoxicity, implicating that ROS generation played a vital role in AL-1 cytotoxicity. Accumulated ROS resulted in oxidative DNA damage and subsequent G2/M arrest and mitochondrial-mediated apoptosis. The current work reveals that a novel andrographolide derivative AL-1 exerts its anticancer cytotoxicity through a ROS-dependent DNA damage and mitochondrial-mediated apoptosis mechanism.


Asunto(s)
Apoptosis/efectos de los fármacos , Diterpenos/farmacología , Proteoma/análisis , Ácido Tióctico/farmacología , Supervivencia Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Diterpenos/química , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Células K562 , Leucemia/tratamiento farmacológico , Leucemia/metabolismo , Leucemia/patología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Ácido Tióctico/química
15.
J Proteome Res ; 12(1): 363-77, 2013 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-23170859

RESUMEN

Foot-and-mouth disease virus (FMDV) is an important disease agent that can be difficult to effectively eradicate from herds. Because it is an obligate intracellular parasite, the virus has multiple effects on the host cell during infection. Here, a high-throughput quantitative proteomic approach was used to develop an unbiased holistic overview of the protein changes in IBRS-2 cells infected with FMDV. Stable isotope labeling with amino acids in cell culture (SILAC) combined with LC-MS/MS was performed to identify and quantify 1260 cellular and 2 viral proteins after 6 h of infection of IBRS-2 cells with FMDV. Of these identified and measured cellular protein pairs, 77 were significantly up-regulated, and 50 were significantly down-regulated based on significance B ≤ 0.05. The differentially altered proteins included a number of proteins involved in endolysosomal proteases system, cell cycle, cellular growth and proliferation, and immune cell trafficking. Selected data were validated by Western blot. Ingenuity Pathway Analysis revealed that proteins that changed in response to infection could be assigned to defined canonical pathways and functional groupings, such as integrin signaling. The obtained data might not only improve the understanding of the dynamics of FMDV and host interaction but may also help elucidate the pathogenic mechanism of FMDV infection.


Asunto(s)
Aminoácidos , Virus de la Fiebre Aftosa , Interacciones Huésped-Patógeno/genética , Proteómica , Aminoácidos/química , Aminoácidos/metabolismo , Animales , Línea Celular/virología , Cromatografía Liquida , Regulación hacia Abajo , Estudios de Evaluación como Asunto , Fiebre Aftosa/genética , Fiebre Aftosa/metabolismo , Fiebre Aftosa/virología , Virus de la Fiebre Aftosa/aislamiento & purificación , Virus de la Fiebre Aftosa/patogenicidad , Marcaje Isotópico , Porcinos/virología , Espectrometría de Masas en Tándem , Regulación hacia Arriba
16.
J Proteome Res ; 12(1): 151-61, 2013 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-23252959

RESUMEN

Under the guidance of the Chromosome-centric Human Proteome Project (C-HPP), (1, 2) we conducted a systematic survey of the expression status of genes located at human chromosome 20 (Chr.20) in three cancer tissues, gastric, colon, and liver carcinoma, and their representative cell lines. We have globally profiled proteomes in these samples with combined technology of LC-MS/MS and acquired the corresponding mRNA information upon RNA-seq and RNAchip. In total, 323 unique proteins were identified, covering 60% of the coding genes (323/547) in Chr.20. With regards to qualitative information of proteomics, we overall evaluated the correlation of the identified Chr.20 proteins with target genes of transcription factors or of microRNA, conserved genes and cancer-related genes. As for quantitative information, the expression abundances of Chr.20 genes were found to be almost consistent in both tissues and cell lines of mRNA in all individual chromosome regions, whereas those of Chr.20 proteins in cells are different from tissues, especially in the region of 20q13.33. Furthermore, the abundances of Chr.20 proteins were hierarchically evaluated according to tissue- or cancer-related distribution. The analysis revealed several cancer-related proteins in Chr.20 are tissue- or cell-type dependent. With integration of all the acquired data, for the first time we established a solid database of the Chr.20 proteome.


Asunto(s)
Cromosomas Humanos Par 20 , Neoplasias , Proteínas , Proteoma , Línea Celular Tumoral , Cromosomas Humanos Par 20/genética , Cromosomas Humanos Par 20/metabolismo , Colon/metabolismo , Colon/patología , Mucosa Gástrica/metabolismo , Regulación Neoplásica de la Expresión Génica , Genoma Humano , Humanos , Hígado/metabolismo , Hígado/patología , Espectrometría de Masas , Neoplasias/genética , Neoplasias/metabolismo , Proteínas/clasificación , Proteínas/genética , Proteínas/metabolismo , Proteoma/genética , Proteoma/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Estómago/patología
17.
Nat Commun ; 14(1): 3815, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37369679

RESUMEN

N6-methyladenosine (m6A) modification plays important roles in bioprocesses and diseases. AlkB homolog 5 (ALKBH5) is one of two m6A demethylases. Here, we reveal that ALKBH5 is acetylated at lysine 235 (K235) by lysine acetyltransferase 8 and deacetylated by histone deacetylase 7. K235 acetylation strengthens the m6A demethylation activity of ALKBH5 by increasing its recognition of m6A on mRNA. RNA-binding protein paraspeckle component 1 (PSCP1) is a regulatory subunit of ALKBH5 and preferentially interacts with K235-acetylated ALKBH5 to recruit and facilitate the recognition of m6A mRNA by ALKBH5, thereby promoting m6A erasure. Mitogenic signals promote ALKBH5 K235 acetylation. K235 acetylation of ALKBH5 is upregulated in cancers and promotes tumorigenesis. Thus, our findings reveal that the m6A demethylation activity of ALKBH5 is orchestrated by its K235 acetylation and regulatory subunit PSPC1 and that K235 acetylation is necessary for the m6A demethylase activity and oncogenic roles of ALKBH5.


Asunto(s)
Carcinogénesis , Transformación Celular Neoplásica , Humanos , Acetilación , ARN Mensajero/metabolismo , Carcinogénesis/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Desmetilación , Proteínas de Unión al ARN/metabolismo
18.
Proteomics ; 12(14): 2391-9, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22887948

RESUMEN

Genistein exerts its anticarcinogenic effects by inducing G2/M arrest and apoptosis of cancer cells. However, the precise molecular mechanism of action of genistein has not been completely elucidated. In this study, we used quantitative proteomics to identify the genistein-induced protein alterations in gastric cancer cells and investigate the molecular mechanism responsible for the anti-cancer actions of genistein. Total 86 proteins were identified to be regulated by genistein, most of which were clustered into the regulation of cell division and G2/M transition, consistent with the anti-cancer effect of genistein. Many proteins including kinesin family proteins, TPX2, CDCA8, and CIT were identified for the first time to be regulated by genistein. Interestingly, five kinesin family proteins including KIF11, KIF20A, KIF22, KIF23, and CENPF were found to be simultaneously downregulated by genistein. Significantly decreased KIF20A was selected for further functional studies. The silencing of KIF20A inhibited cell viability and induced G2/M arrest, similar to the effects of genistein treatment in gastric cancer. And the silencing of KIF20A also increased cancer cell sensitivity to genistein inhibition, whereas overexpression of KIF20A markedly attenuated genistein-induced cell viability inhibition and G2/M arrest. These observations suggested that KIF20A played an important role in anti-cancer actions of genistein, and thus may be a potential molecular target for drug intervention of gastric cancer.


Asunto(s)
Genisteína/farmacología , Cinesinas/metabolismo , Mitosis/efectos de los fármacos , Proteoma/efectos de los fármacos , Neoplasias Gástricas/tratamiento farmacológico , Anticarcinógenos/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Humanos , Cinesinas/genética , Mapas de Interacción de Proteínas/efectos de los fármacos , Proteoma/análisis , Interferencia de ARN , ARN Interferente Pequeño , Transducción de Señal/efectos de los fármacos , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología
19.
J Proteome Res ; 11(2): 995-1008, 2012 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-22148862

RESUMEN

The infection of host cells by porcine circovirus type 2 (PCV2) leads to extensive modulation of the gene expression levels of target cells. To uncover the pathogenesis and virus-host interactions of PCV2, a quantitative proteomic study using the stable isotope labeling with amino acids in cell culture (SILAC), coupled with mass spectrometry, was performed on PCV2-infected PK-15 cells. The SILAC-based approach identified 1341 proteins, 163 of which showed significant change in level at 72 h after infection (79 up-regulated and 84 down-regulated). The modulated proteins included a number of proteins involved in substrate transport, cytoskeletal changes, and the stress response. Changes in the expression levels of selected proteins were verified by Western blot analysis. Ingenuity Pathway Analysis was used to reveal protein and interactive pathway regulation in response to PCV2 infection. Functional network and pathway analyses could provide insights into the complexity and dynamics of virus-host cell interactions and may accelerate our understanding of the mechanisms of PCV2 infection.


Asunto(s)
Infecciones por Circoviridae/metabolismo , Circovirus/metabolismo , Proteoma/análisis , Animales , Línea Celular , Infecciones por Circoviridae/microbiología , Regulación hacia Abajo , Interacciones Huésped-Patógeno , Marcaje Isotópico/métodos , Mapas de Interacción de Proteínas , Proteínas/análisis , Proteínas/química , Proteínas/clasificación , Proteoma/química , Proteómica/métodos , Transducción de Señal , Porcinos , Regulación hacia Arriba
20.
BMC Biochem ; 13: 25, 2012 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-23157228

RESUMEN

BACKGROUND: Nasopharyngeal carcinoma (NPC) has a high metastatic feature. N,N'-Dinitrosopiperazine (DNP) is involved in NPC metastasis, but its mechanism is not clear. The aim of this study is to reveal the pathogenesis of DNP-involved metastasis. 6-10B cells with low metastasis are from NPC cell line SUNE-1, were used to investigate the mechanism of DNP-mediated NPC metastasis. RESULTS: 6-10B cells were grown in DMEM containing 2H4-L-lysine and 13C 6 15 N4-L-arginine or conventional L-lysine and L-arginine, and identified the incorporation of amino acid by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Labeled 6-10B cells were treated with DNP at 0 -18 µM to establish the non-cytotoxic concentration (NCC) range. NCC was 0 -10 µM. Following treatment with DNP at this range, the motility and invasion of cells were detected in vitro, and DNP-mediated metastasis was confirmed in the nude mice. DNP increased 6-10B cell metastasis in vitro and vivo. DNP-induced protein expression was investigated using a quantitative proteomic. The SILAC-based approach quantified 2698 proteins, 371 of which showed significant change after DNP treatment (172 up-regulated and 199 down-regulated proteins). DNP induced the change in abundance of mitochondrial proteins, mediated the status of oxidative stress and the imbalance of redox state, increased cytoskeletal protein, cathepsin, anterior gradient-2, and clusterin expression. DNP also increased the expression of secretory AKR1B10, cathepsin B and clusterin 6-10B cells. Gene Ontology and Ingenuity Pathway analysis showed that DNP may regulate protein synthesis, cellular movement, lipid metabolism, molecular transport, cellular growth and proliferation signaling pathways. CONCLUSION: DNP may regulate cytoskeletal protein, cathepsin, anterior gradient-2, and clusterin expression, increase NPC cells motility and invasion, is involved NPC metastasis.


Asunto(s)
Metástasis de la Neoplasia , Nitrosaminas/farmacología , Proteoma/efectos de los fármacos , Animales , Carcinoma , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Proteínas del Citoesqueleto/metabolismo , Humanos , Marcaje Isotópico , Redes y Vías Metabólicas , Ratones , Ratones Desnudos , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patología , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA