Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 25(29): 19764-19772, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37448223

RESUMEN

Gas sensors with superior comprehensive performance at room temperature (RT) are always desired. Here, Au, Pt and Pt/Au-decorated graphene-based field effect transistor (FET) sensors for ammonia (denoted as Au/Gr, Pt/Gr and Pt/Au/Gr, respectively) are designed and fabricated. All these devices exhibited far better RT sensing performances for ammonia compared with graphene devices. Applying positive back gate voltages can further enhance their RT performance in which the Pt/Au/Gr devices show superior RT comprehensive performance such as a response of -16.2%, a recovery time of 4.6 min, and especially a much reduced response time of 54 s for 200 ppm NH3 with a detection limit of 103 ppb at a gate voltage of +60 V, and can be potentially tailored for further performance improvement by controlling the ratios of Pt and Au. The dependences of their performance on the gate voltage except for the response time could be reasonably explained by theoretical calculations in terms of the changes of the total density of states near the Fermi level, adsorption energies, transferred charges and adsorption distances. This study provides an effective solution for performance improvement of FET-based sensors via synergistic effects of ultrathin-layer multiple-metallic decoration and gate voltage, which would promote the exploration of novel sensors.

2.
Phys Chem Chem Phys ; 22(44): 25769-25779, 2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33147304

RESUMEN

Effective detection of NO2 and NH3 gases at room temperature (RT) is critical for environmental monitoring and protection. Here, graphene-based gas sensors (Cu/Gr device) of single layer graphene decorated by 6, 8 and 10 nm thick Cu layers with graphene instead of conventional metal as interdigital electrodes are designed and fabricated. The RT performance for both NO2 and NH3 detection can be greatly enhanced by UV light illumination which is closely related to the thickness of Cu layers in which the device with 8 nm thickness (8 nm Cu/Gr device) exhibits the best performances. Analysis of XPS reveals that Cu is partly oxidized to Cu+ and Cu2+ for 6 nm with extra Cuδ+ (1 < δ < 2) for 8 and 10 nm. The contents and distributions of copper oxides and copper in Cu layers influence the catalytic effects and the heterojunction barrier and thus the performances. The RT responses of -30.9% and -8.1% for 5 and 0.3 ppm NO2, and of +29.1% and +5.9% for 105 and 10 ppm NH3 are achieved for the 8 nm Cu/Gr device, respectively. The limits of detection (LODs) for NO2 and NH3 are 12 ppb and 17 ppb, respectively. The sensing mechanisms are discussed in terms of density functional theory (DFT) calculations and energy band diagrams. The study demonstrates an effective solution of improving the device performance by modifying the device configuration and incorporating combined oxides naturally oxidized, which provides the novel design alternatives for high performance sensors.

3.
Phys Chem Chem Phys ; 22(29): 16701-16711, 2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32658227

RESUMEN

The switch in the sensing mode for better identification of donor/acceptor gases with simultaneous enhancement of the sensing performance at a fixed working temperature particularly room temperature (RT) is quite challenging for gas sensors. Herein, TiO2/graphene hybrid field effect transistor (FET) sensors (TiO2/GFET) with varied hybrid areas are presented. Superior sensing and recovery performances for NH3 are achieved through sensing mode switch via gate biasing. 16.40% response and full recovery for 25 ppm NH3 are achieved for TiO2/GFET sensors with 100% titanium dioxide coverage (D100) at RT (27 °C) with 15-20% humidity upon switching sensing mode from p- to n via gate biasing. Full recovery is attributed to the Coulomb interaction between charged polar donor molecules and positively polarized surface which is enhanced by the switch from p- to n-mode. The humidity can enhance response up to -35.48% for 25 ppm NH3 with full recovery in n-mode for D100. D100 shows superior selectivity towards NH3 against both electron-acceptor NO2 and several other electron-donor analytes. The sensing behaviors for NH3 are well elucidated using energy band diagrams based on the experimental results. This study proposes a novel idea for performance improvement of FET based sensors with p- and n-type hybrid sensing materials through p (n)- to n (p)-mode switch assisted by gate biasing by incorporating suitable electron (hole) rich materials to compensate holes (electrons) in p (n)-type materials for electron donor (acceptor) gas detection.

4.
Adv Sci (Weinh) ; 9(15): e2200647, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35322577

RESUMEN

As an indispensable constituent of plasmonic materials/dielectrics for surface enhanced Raman scattering (SERS) effects, dielectrics play a key role in excitation and transmission of surface plasmons which however remain more elusive relative to plasmonic materials. Herein, different roles of vertical dielectric walls, and horizontal and vertical dielectric layers in SERS via 3D periodic plasmonic materials/dielectrics structures are studied. Surface plasmon polariton (SPP) interferences can be maximized within dielectric walls besieged by plasmonic layers at the wall thicknesses of integral multiple half-SPPplasmonic material-dielectric -wavelength which effectively excites localized surface plasmon resonance to improve SERS effects by one order of magnitude compared to roughness and/or nanogaps only. The introduction of extra Au nanoparticles on thin dielectric layers can further enhance SERS effects only slightly. Thus, the designed Au/SiO2 based SERS chips show an enhancement factor of 8.9 × 1010 , 265 times higher relative to the chips with far thinner SiO2 walls. As many as 1200 chips are batch fabricated for a 4 in wafer using cost-effective nanoimprint lithography which can detect trace Hg ions as low as 1 ppt. This study demonstrates a complete generalized platform from design to low-cost batch-fabrication to applications for novel high performance SERS chips of any plasmonic materials/dielectrics.

5.
Adv Sci (Weinh) ; 6(11): 1900177, 2019 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-31179223

RESUMEN

Accurate design of high-performance 3D surface-enhanced Raman scattering (SERS) probes is the desired target, which is possibly implemented with a prerequisite of quantifying formidable multiple coupling effects involved. Herein, by combining theory and experiments on 3D periodic Au/SiO2 nanogrid models, a generalized methodology of accurately designing high performance 3D SERS probes is developed. Structural symmetry, dimensions, Au roughness, and polarization are successfully correlated quantitatively to intrinsic localized electromagnetic field (EMF) enhancements by calculating surface plasmon polariton (SPP), localized surface plasmon resonance (LSPR), optical standing wave effects, and their couplings theoretically, which is experimentally verified. The hexagonal SERS probes optimized by this methodology realize over two orders of magnitudes (405 times) improvement of detection limit for Rhodamine 6G model molecules (2.17 × 10-11 m) compared to the unoptimized probes with the same number density of hot spots, an enhancement factor of 3.4 × 108, a uniformity of 5.52%, and are successfully applied to the detection of 5 × 10-11 m Hg ions in water. This unambiguously results from the Au roughness-independent extra 144% contribution of LSPR effects excited by SPP interference waves as secondary sources, which is very unusual to be beyond the conventional recognition.

6.
ACS Appl Mater Interfaces ; 9(41): 35998-36008, 2017 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-28936866

RESUMEN

In this paper, we investigated the optical and electrical characteristics of hybrid solar cells using silicon pyramid/Ag nanoparticle and nanowire/Ag nanoparticle nanocomposite structures, which are obtained by the Ag-assisted electroless etching method. We introduced the application of the physical and chemical properties of Ag nanoparticles on four kinds of solar cells: silicon pyramid, silicon pyramid/PEDOT:PSS, silicon nanowire, and silicon nanowire/PEDOT:PSS. We simulated the absorption of these structures for different parameters. Furthermore, we also show the result of the current density-voltage (J-V) characterization of the sample with Ag nanoparticles, which exhibits an improvement of the power conversion efficiency (PCE) in contrast to the samples without Ag nanoparticles. It was found that the properties of light-trapping of Ag nanoparticles have a prominent impact on improving the PCE of hybrid solar cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA