Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Small ; 20(27): e2311421, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38282177

RESUMEN

To improve ion transport kinetics and electronic conductivity between the different phases in sodium/lithium-ion battery (LIB/SIB) anodes, heterointerface engineering is considered as a promising strategy due to the strong built-in electric field. However, the lattice mismatch and defects in the interphase structure can lead to large grain boundary resistance, reducing the ion transport kinetics and electronic conductivity. Herein, monometallic selenide Fe3Se4-Fe7Se8 semi-coherent heterointerface embedded in 3D connected Nitrogen-doped carbon yolk-shell matrix (Fe3Se4-Fe7Se8@NC) is obtained via an in situ phase transition process. Such semi-coherent heterointerface between Fe3Se4 and Fe7Se8 shows the matched interfacial lattice and strong built-in electric field, resulting in the low interface impedance and fast reaction kinetics. Moreover, the yolk-shell structure is designed to confine all monometallic selenide Fe3Se4-Fe7Se8 semi-coherent heterointerface nanoparticles, improving the structural stability and inhibiting the volume expansion effect. In particular, the 3D carbon bridge between multi-yolks shell structure improves the electronic conductivity and shortens the ion transport path. Therefore, the efficient reversible pseudocapacitance and electrochemical conversion reaction are enabled by the Fe3Se4-Fe7Se8@NC, leading to the high specific capacity of 439 mAh g-1 for SIB and 1010 mAh g-1 for LIB. This work provides a new strategy for constructing heterointerface of the anode for secondary batteries.

2.
ACS Appl Mater Interfaces ; 16(2): 2438-2448, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38180810

RESUMEN

The large grain boundary resistance between different components of the anode electrode easily leads to the low ion transport efficiency and poor electrochemical performance of lithium-/sodium-ion batteries (LIBs/SIBs). To address the issue, a Janus heterointerface with a Mott-Schottky structure is proposed to optimize the interface atomic structure, weaken interatomic resistance, and improve ion transport kinetics. Herein, Janus Co/Co2P@carbon-nanotubes@core-shell (Janus Co/Co2P@CNT-CS) refined urchin-like architecture derived from metal-organic frameworks is reported via a coating-phosphating process, where the Janus Co/Co2P heterointerface nanoparticles are confined in carbon nanotubes and a core-shell polyhedron. Such a Janus Co/Co2P heterointerface shows the strong built-in electric field, facilitating the controllable ion transport channels and the high ion transport efficiency. The Janus Co/Co2P@CNT-CS refined urchin-like architecture composed of a core-shell structure and the grafting carbon nanotubes enhances the structure stability and electronic conductivity. Benefiting from the spaced-confined Janus heterointerface engineering and synergistic effects between the core-shell structure and the grafting carbon nanotubes, the Janus Co/Co2P@CNT-CS refined urchin-like architecture demonstrates the fast ion transport rate and excellent pseudocapacitance performance for LIBs/SIBs. In this case, the Janus Co/Co2P@CNT-CS refined urchin-like architecture shows high specific capacities of 709 mA h g-1 (200 cycles) and 203 mA h g-1 (300 cycles) at a current density of 500 mA g-1 for LIBs/SIBs, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA