Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 53(1): 116-125, 2024 Feb 05.
Artículo en Inglés, Zh | MEDLINE | ID: mdl-38426693

RESUMEN

OBJECTIVES: To prepare 7-hydroxyethyl chrysin (7-HEC) loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles and to detect the in vitro release. METHODS: The 7-HEC/PLGA nanoparticles were prepared by emulsification solvent volatilization method. The particle size, polydispersity index (PDI), encapsulation rate, drug loading and zeta potential were measured. The prescription was optimized by single factor investigation combined with Box-Behnken response surface method. Mannitol was used as protectant to prepare lyophilized powder, and the optimal formulation was characterized and studied for the in vitro release. RESULTS: The optimal formulation of 7-HEC/PLGA nanoparticles was as follows: drug loading ratio of 2.12∶20, oil-water volume ratio of 1∶14.7, and 2.72% soybean phospholipid as emulsifier. With the optimal formulation, the average particle size of 7-HEC/PLGA nanoparticles was (240.28±0.96) nm, the PDI was 0.25±0.69, the encapsulation rate was (75.74±0.80)%, the drug loading capacity was (6.98±0.83)%, and the potentiostatic potential was (-18.17±0.17) mV. The cumulative in vitro release reached more than 50% within 48 h. CONCLUSIONS: The optimized formulation is stable and easy to operate. The prepared 7-HEC/PLGA nanoparticles have uniform particle size, high encapsulation rate and significantly higher dissolution rate than 7-HEC.


Asunto(s)
Flavonoides , Nanopartículas , Ácido Poliglicólico , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ácido Láctico , Tamaño de la Partícula , Portadores de Fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA