Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am J Physiol Endocrinol Metab ; 315(1): E38-E51, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29351486

RESUMEN

Insulin, the most potent anabolic hormone, is critical for somatic growth and metabolism in vertebrates. Type 2 diabetes, which is the primary cause of hyperglycemia, results from an inability of insulin to signal glycolysis and gluconeogenesis. Our previous study showed that double knockout of insulin receptor a ( insra) and b ( insrb) caused ß-cell hyperplasia and lethality from 5 to 16 days postfertilization (dpf) (Yang BY, Zhai G, Gong YL, Su JZ, Han D, Yin Z, Xie SQ. Sci Bull (Beijing) 62: 486-492, 2017). In this study, we characterized the physiological roles of Insra and Insrb, in somatic growth and fueling metabolism, respectively. A high-carbohydrate diet was provided for insulin receptor knockout zebrafish from 60 to 120 dpf to investigate phenotype inducement and amplification. We observed hyperglycemia in both insra-/- fish and insrb-/- fish. Impaired growth hormone signaling, increased visceral adiposity, and fatty liver were detected in insrb-/- fish, which are phenotypes similar to the lipodystrophy observed in mammals. More importantly, significantly diminished protein levels of P-PPARα, P-STAT5, and IGF-1 were also observed in insrb-/- fish. In insra-/- fish, we observed increased protein content and decreased lipid content of the whole body. Taken together, although Insra and Insrb show overlapping roles in mediating glucose metabolism through the insulin-signaling pathway, Insrb is more prone to promoting lipid catabolism and protein synthesis through activation of the growth hormone-signaling pathway, whereas Insra primarily acts to promote lipid synthesis via glucose utilization.


Asunto(s)
Fenómenos Fisiológicos de la Nutrición/fisiología , Receptor de Insulina/fisiología , Pez Cebra/fisiología , Animales , Ingestión de Alimentos/genética , Técnicas de Inactivación de Genes , Glucosa/metabolismo , Insulina/fisiología , Metabolismo de los Lípidos/genética , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Consumo de Oxígeno/genética , Receptor de Insulina/genética , Transducción de Señal/genética , Proteínas de Pez Cebra/genética
2.
Gen Comp Endocrinol ; 269: 33-45, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30102881

RESUMEN

An inability of insulin to signal glycolysis and gluconeogenesis would largely result in type 2 diabetes. In this study, the physiological roles of zebrafish insulin receptor a and b in maintaining blood glucose homeostasis were characterized. We observed that, though blood glucose in insra-/- fish and insrb-/- fish were comparable with the control siblings at 0 h postprandium (hpp), the most evident hyperglycemia have been observed in insra-/- fish from 1 hpp to 3 hpp. A mild increase of blood glucose in insrb-/- fish has been seen only at 1.5 hpp. The down-regulated expressions of glycolytic enzymes were observed in insra-/- fish and insrb-/- fish liver and muscle, together with the significantly decreased activities or concentrations of glycolytic enzymes. These results suggest that both Insra and Insrb were critical in glycolysis. Intriguingly, the up-regulated expressions of gluconeogenic enzymes, pck1 and g6pca.1, along with the elevated enzyme activities, were observed in insra-/- fish liver at 1 hpp and 1.5 hpp. Compared with the control fish, the elevated plasma insulin and lowered phosphorylated AKT were observed in insra-/- fish and insrb-/- fish, suggesting that there is an insulin resistance in insra-/- fish and insrb-/- fish. The increased levels of both transcriptions of foxo1a and Foxo1a protein abundance in the insra-/- fish liver have been found. When insra-/- fish treated with the Foxo1 inhibitor, the postprandial blood glucose levels could be normalized, accompanied with the normalized expression levels and enzyme activities of both pck1 and g6pca.1. Therefore, Insra and Insrb demonstrate a similar role in promoting glycolysis, but Insra is involved in inhibiting gluconeogenesis via down-regulating the expression of foxo1a. Our results indicate that Insra and Insrb exhibit diversified functions in maintaining glucose homeostasis in zebrafish.


Asunto(s)
Glucemia/metabolismo , Homeostasis , Receptor de Insulina/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Conducta Alimentaria , Proteína Forkhead Box O1/metabolismo , Gluconeogénesis , Glucólisis , Insulina/sangre , Resistencia a la Insulina , Hígado/metabolismo , Transcripción Genética , Regulación hacia Arriba
3.
Sci Bull (Beijing) ; 62(7): 486-492, 2017 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36659257

RESUMEN

Hyperglycemia in type 2 diabetes results from an inability of insulin to regulate gluconeogenesis. To characterize the role of the insulin/insulin receptor pathway in glycometabolism and type 2 diabetes, we created a zebrafish model in which insulin receptors a and b (insra and insrb) have been ablated. We first observed that insra and insrb were both expressed abundantly during embryonic development and in various adult tissues. Increased expression of insulin and number of ß-cells were observed in insra-/-/insrb-/- fish together with higher glucose in insra-/-, insrb-/-, or insra-/-/insrb-/- fish, indicating that insra and insrb were knocked out effectively. However, compared to the wild-type fish, insra-/-/insrb-/- fish died between 5 and 16days post-fertilization (dpf) with severe pericardial edema and increased level of cell apoptosis, which was not induced by increased total body glucose content. Increased gluconeogenesis and decreased glycolysis were also observed in both single and double knockout fish, but no mortality or malformation was observed in single knockout fish. Given the importance of insulin receptors in glucose homeostasis and embryonic development, transcriptome analysis was used to provide an important model of defective insulin signaling and to study its developmental consequences in zebrafish. The results indicated that both insra and insrb played a pivotal role in glucose metabolism and embryonic development, and insra was more critical than insrb in the insulin signaling pathway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA