Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Infect Dis ; 223(8): 1313-1321, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33605423

RESUMEN

Domestic cats, an important companion animal, can be infected with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). This has aroused concern regarding the ability of domestic cats to spread the virus that causes coronavirus disease 2019. We systematically demonstrated the pathogenesis and transmissibility of SARS-CoV-2 in cats. Serial passaging of the virus between cats dramatically attenuated the viral transmissibility, likely owing to variations of the amino acids in the receptor-binding domain sites of angiotensin-converting enzyme 2 between humans and cats. These findings provide insight into the transmissibility of SARS-CoV-2 in cats and information for protecting the health of humans and cats.


Asunto(s)
COVID-19/transmisión , COVID-19/veterinaria , SARS-CoV-2/patogenicidad , Aminoácidos/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , COVID-19/metabolismo , Gatos , Línea Celular , Chlorocebus aethiops , Femenino , Humanos , Masculino , Células Vero
2.
Microorganisms ; 12(4)2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-38674591

RESUMEN

Gut microbes play a vital role in the health and disease of animals, especially in relation to pathogen infections. Chinchillas, ferrets, and marmots are commonly used as important laboratory animals for infectious disease research. Here, we studied the bacterial and fungal microbiota and discovered that chinchillas had higher alpha diversity and a higher abundance of bacteria compared to marmots and ferrets by using the metabarcoding of 16S rRNA genes and ITS2, coupled with co-occurrence network analysis. The dominant microbes varied significantly among the three animal species, particularly in the gut mycobiota. In the ferrets, the feces were dominated by yeast such as Rhodotorula and Kurtzmaniella, while in the chinchillas, we found Teunomyces and Penicillium dominating, and Acaulium, Piromyces, and Kernia in the marmots. Nevertheless, the dominant bacterial genera shared some similarities, such as Clostridium and Pseudomonas across the three animal species. However, there were significant differences observed, such as Vagococcus and Ignatzschineria in the ferrets, Acinetobacter and Bacteroides in the chinchillas, and Bacteroides and Cellvibrio in the marmots. Additionally, our differential analysis revealed significant differences in classification levels among the three different animal species, as well as variations in feeding habitats that resulted in distinct contributions from the host microbiome. Therefore, our data are valuable for monitoring and evaluating the impacts of the microbiome, as well as considering potential applications.

3.
J Virol ; 86(24): 13835, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23166245

RESUMEN

We report the complete genome sequence of a novel calicivirus isolated from a diseased mink in China. The complete viral genome is approximately 8.4 kb in length and consists of three open reading frames. The availability of the complete genome sequence is helpful for further investigation into the molecular characteristics and epidemiology of calicivirus in mink.


Asunto(s)
Caliciviridae/genética , Genoma Viral , Visón/virología , Animales , China , Datos de Secuencia Molecular , Sistemas de Lectura Abierta
4.
Virol J ; 8: 520, 2011 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-22087872

RESUMEN

A new isolate of canine distemper virus (CDV), named ZJ7, was isolated from lung tissues of a dog suspected with CDV infection using MDCK cells. The ZJ7 isolate induced cytopathogenic effects of syncytia in MDCK cell after six passages. In order to evaluate pathogenesis of ZJ7 strain, three CDV sero-negative dogs were intranasally inoculated with its virus suspension. All infected dogs developed clinical signs of severe bloody diarrhea, conjunctivitis, ocular discharge, nasal discharge and coughing, fever and weight loss at 21 dpi, whereas the mock group infected with DMEM were normal. The results demonstrated that CDV-ZJ7 strain isolated by MDCK cell was virulent, and the nucleotide and amino acid sequences of strain ZJ7 had no change after isolation by MDCK cell when compared with the original virus from the fresh tissues. Molecular and phylogenetic analyses for the nucleocapsid (N), phosphoprotein (P) and receptor binding haemagglutinin (H) gene of the ZJ7 isolate clearly showed it is joins to the Asia 1 group cluster of CDV strains, the predominant genotype in China.


Asunto(s)
Virus del Moquillo Canino/clasificación , Virus del Moquillo Canino/aislamiento & purificación , Moquillo/virología , Animales , Línea Celular , China , Análisis por Conglomerados , Efecto Citopatogénico Viral , Moquillo/patología , Virus del Moquillo Canino/genética , Virus del Moquillo Canino/patogenicidad , Perros , Femenino , Genotipo , Pulmón/virología , Datos de Secuencia Molecular , Filogenia , ARN Viral/genética , Análisis de Secuencia de ADN , Proteínas Virales/genética
5.
Sci Rep ; 10(1): 16628, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-33024229

RESUMEN

Experimental animals including the ferret, marmoset, woodchuck, mini pig, and tree shrew have been used in biomedical research. However, their gut microbiota have not been fully investigated. In this study, the gut microbiota of these five experimental animals were analyzed with 16S rRNA sequencing. The phyla Firmicutes, Bacteroidetes, and Fusobacteria were present in the gut microbiota of all the species. Specific phyla were present in different animals: Proteobacteria in the ferret, Tenericutes in the marmoset, and Spirochaetes in the mini pig. Fusobacterium and unidentified Clostridiales were the dominant genera in the ferret, whereas Libanicoccus, Lactobacillus, Porphyromonas, and Peptoclostridium were specific to marmoset, mini pig, woodchuck, and tree shrew, respectively. A clustering analysis showed that the overall distribution of microbial species in the guts of these species mirrored their mammalian phylogeny, and the microbiota of the marmoset and tree shrew showed the closest bray_curtis distances to that of humans. PICRUSt functional prediction separated the woodchuck from the other species, which may reflect its herbivorous diet. In conclusion, both the evolutionary phylogeny and daily diet affect the gut microbiota of these experimental animals, which should not be neglected for their usage in biomedical research.


Asunto(s)
Animales de Laboratorio/microbiología , Callithrix/microbiología , Dieta/veterinaria , Heces/microbiología , Hurones/microbiología , Microbioma Gastrointestinal , Marmota/microbiología , Porcinos Enanos/microbiología , Tupaiidae/microbiología , Animales , Femenino , Microbioma Gastrointestinal/genética , Masculino , Filogenia , ARN Ribosómico 16S , Porcinos
6.
Front Immunol ; 10: 3060, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32038617

RESUMEN

The increasing life expectancy of humans has led to a growing numbers of patients with chronic diseases and end-stage organ failure. Transplantation is an effective approach for the treatment of end-stage organ failure; however, the imbalance between organ supply and the demand for human organs is a bottleneck for clinical transplantation. Therefore, xenotransplantation might be a promising alternative approach to bridge the gap between the supply and demand of organs, tissues, and cells; however, immunological barriers are limiting factors in clinical xenotransplantation. Thanks to advances in gene-editing tools and immunosuppressive therapy as well as the prolonged xenograft survival time in pig-to-non-human primate models, clinical xenotransplantation has become more viable. In this review, we focus on the evolution and current status of xenotransplantation research, including our current understanding of the immunological mechanisms involved in xenograft rejection, genetically modified pigs used for xenotransplantation, and progress that has been made in developing pig-to-pig-to-non-human primate models. Three main types of rejection can occur after xenotransplantation, which we discuss in detail: (1) hyperacute xenograft rejection, (2) acute humoral xenograft rejection, and (3) acute cellular rejection. Furthermore, in studies on immunological rejection, genetically modified pigs have been generated to bridge cross-species molecular incompatibilities; in the last decade, most advances made in the field of xenotransplantation have resulted from the production of genetically engineered pigs; accordingly, we summarize the genetically modified pigs that are currently available for xenotransplantation. Next, we summarize the longest survival time of solid organs in preclinical models in recent years, including heart, liver, kidney, and lung xenotransplantation. Overall, we conclude that recent achievements and the accumulation of experience in xenotransplantation mean that the first-in-human clinical trial could be possible in the near future. Furthermore, we hope that xenotransplantation and various approaches will be able to collectively solve the problem of human organ shortage.


Asunto(s)
Trasplante Heterólogo , Animales , Animales Modificados Genéticamente , Biomarcadores , Trastornos de la Coagulación Sanguínea/etiología , Manejo de la Enfermedad , Regulación de la Expresión Génica , Rechazo de Injerto/genética , Rechazo de Injerto/inmunología , Supervivencia de Injerto/genética , Supervivencia de Injerto/inmunología , Haplorrinos , Humanos , Inmunidad Celular , Inmunidad Humoral , Modelos Animales , Especificidad de la Especie , Porcinos , Investigación Biomédica Traslacional , Inmunología del Trasplante , Trasplante Heterólogo/efectos adversos , Trasplante Heterólogo/métodos
7.
J Virol Methods ; 191(1): 1-8, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23538038

RESUMEN

Porcine circovirus type1 (PCV1), described initially as a contaminant of a porcine kidney cell line, is ubiquitous within the swine population The presence of PCV1 in porcine cell lines can lead to contamination during both human and porcine vaccine production. Therefore, a rapid, specific, sensitive and practical method is needed for the detection of PCV1 in bio-products. The aim of this study was to compare three assays in their ability to accurately quantify PCV1 virus in biological samples, namely loop-mediated isothermal amplification (LAMP), SYBR green I-based real-time polymerase chain reaction (PCR) and conventional PCR. All assays yielded successful quantitation of PCV1 DNA and differentiated between PCV1-free and-contaminated cells. In addition, the results were specific for PCV1, since amplification of samples containing closely-related PCV2 or other pathogenic swine viruses yielded negative results. The lowest detection threshold of 10(2) copies was displayed by the SYBR green I-based real-time PCR assay. In addition, this assay was the most effective in detecting PCV1 contamination in a set of commercially available porcine vaccines. Therefore we conclude that SYBR green I-based real-time PCR is specific and sensitive for detecting PCV1 in biological samples and maybe used for quality control of vaccine and biomaterial production.


Asunto(s)
Circovirus/aislamiento & purificación , ADN Viral/aislamiento & purificación , Técnicas de Amplificación de Ácido Nucleico/métodos , Carga Viral/métodos , Animales , Benzotiazoles , Línea Celular , ADN Viral/genética , Diaminas , Compuestos Orgánicos/metabolismo , Quinolinas , Sensibilidad y Especificidad , Coloración y Etiquetado/métodos , Porcinos
8.
Vet Microbiol ; 161(1-2): 58-65, 2012 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-22959006

RESUMEN

Porcine reproductive and respiratory syndrome (PRRS) is an economically important disease in swine-producing areas. Many vaccine strategies have been developed to control the disease, but none have yet been completely successful. The development of a cell line that can produce large yields of PRRSV vaccine is very necessary. In order to determine the role of Nsp2 in the replication of the highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) in MARC-145 cells, we used an RNA interference-based short hairpin RNA of Nsp2 and constructed cell lines expressing the HP-PRRSV Nsp2 gene. Conserved HP-PRRSV Nsp2 sequences were used to design short interfering RNAs and test their ability to silence PRRSV transcript expression and replication in cells in vitro transfection. Nsp2, ORF7, and ß-actin mRNA expression were determined using semi-quantitative real-time PCR. Infection with siRNA targeting Nsp2 was found to reduce the Nsp2 expression in MARC-145 cells infected with PRRSV. Both MARC-145-TJ Nsp2 and MARC-145-TJM Nsp2 cell lines were screened by G418, which were infected with HP-PRRSV, normal MARC-145 cells for mock, and then virus titers were calculated by TCID(50) after the CPE showing up. The downregulation of Nsp2 induced a remarkable decrease in PRRSV replication, causing the reduction of structural protein. The Nsp2-targeted siRNA was found to downregulate the expression of Nsp2 in MARC-145 cells and inducing replication reduce of PRRSV in MARC-145 cells. The shRNA vectors S-1 and S-2 could effectively induce the inhibition of viral replication in MARC-145. Results showed that cells expressing the Nsp2 gene of the highly pathogenic PRRSV TJ and attenuated TJM remained stable. PRRSV replication was faster in these cells than in MARC-145 cells, especially during the early stage. This shows that Nsp2 plays a positive role in PRRSV proliferation.


Asunto(s)
Regulación Viral de la Expresión Génica , Silenciador del Gen , Síndrome Respiratorio y de la Reproducción Porcina/virología , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Virus del Síndrome Respiratorio y Reproductivo Porcino/metabolismo , Replicación Viral/genética , Animales , Línea Celular , Quimiocina CCL7 , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Porcinos , Factores de Tiempo , Carga Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA