Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Small ; 20(8): e2305589, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37828633

RESUMEN

In consideration of energy economization and light quality, concurrently attaining high external quantum efficiency (ηext ) and high color rendering index (CRI) is of high significance for the commercialization of hybrid white organic light-emitting diodes (WOLEDs) but is challenging. Herein, a blue luminescent molecule (2PCz-XT) consisting of a xanthone acceptor and two 3,6-diphenylcarbazole donors is prepared, which exhibits strong delayed fluorescence, short delayed fluorescence lifetime, and excellent electroluminescence property, and can sensitize green, orange, and red phosphorescent emitters efficiently. By employing 2PCz-XT as sensitizer and phosphorescent emitters as dopants, efficient two-color and three-color WOLED architectures with ultra-thin phosphorescent emitting layers (EMLs) are proposed and constructed. By incorporating a thin interlayer to modulate exciton recombination zone and reduce exciton loss, high-performance three-color hybrid WOLEDs are finally achieved, providing a high ηext of 26.8% and a high CRI value 83 simultaneously. Further configuration optimization realizes a long device operational lifetime. These WOLEDs with ultra-thin phosphorescent EMLs are among the state-of-the-art hybrid WOLEDs in the literature, demonstrating the success and applicability of the proposed device design for developing robust hybrid WOLEDs with superb efficiency and color quality.

2.
Chemistry ; 30(14): e202303990, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38060300

RESUMEN

Red luminescent materials are essential components for full color display and white lightening based on organic light-emitting diode (OLED) technology, but the extension of emission color towards red or deep red region generally leads to decreased photoluminescence and electroluminescence efficiencies. Herein, we wish to report two new luminescent molecules (2CNDPBPPr-TPA and 4CNDPBPPr-TPA) consisting of cyano-substituted 11,12-diphenyldipyrido[3,2-a:2',3'-c]phenazine acceptors and triphenylamine donors. As the increase of cyano substituents, the emission wavelength is greatly red-shifted and the reverse intersystem crossing process is promoted, resulting in strong red delayed fluorescence. Meanwhile, due to the formation of intramolecular hydrogen bonds, the molecular structures become rigidified and planarized, which brings about large horizontal dipole ratios. As a result, 2CNDPBPPr-TPA and 4CNDPBPPr-TPA can perform as emitters efficiently in OLEDs, furnishing excellent external quantum efficiencies of 28.8 % at 616 nm and 20.2 % at 648 nm, which are significantly improved in comparison with that of the control molecule without cyano substituents. The findings in this work demonstrate that the introduction of cyano substituents to the acceptors of delayed fluorescence molecules could be a facile and effective approach to explore high-efficiency red or deep red delayed fluorescence materials.

3.
Luminescence ; 39(2): e4684, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38332470

RESUMEN

This study reports a sensitive and selective colorimetric approach for the analysis of dopamine (DA) based on CeO2 @ZIF-8/Cu-CDs laccase-like nanozymes activity. The CeO2 @ZIF-8/Cu-CDs was synthesized using cerium oxide (CeO2 ) and copper-doped carbon dots (Cu-CDs) with 2-methylimidazole by a facilely hydrothermal approach. The CeO2 @ZIF-8/Cu-CDs exhibited excellent laccase-like nanozymes activity and can oxidize the colorless substrate (DA) to red product with 4-aminoantipyrine as the chromogenic agent. The Michaelis-Menten constant (Km ) and the maximal velocity (Vmax ) of CeO2 @ZIF-8/Cu-CDs are 0.20 mM and 1.48 µM/min, respectively. The detection method has a linear range of 0.05-7.5 µg/mL and a detection limit as low as 8.5 ng/mL with good reproducibility. The developed colorimetric sensor was applied to rapid and precise quantitative evaluation of DA levels in serum and urine samples. This study presents a new approach for detecting biological molecules by utilizing the controlled regulation of nanozymes' laccase-like activity.


Asunto(s)
Cobre , Dopamina , Lacasa , Colorimetría , Reproducibilidad de los Resultados , Carbono
4.
Molecules ; 29(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731485

RESUMEN

Abnormal viscosity is closely related to the occurrence of many diseases, such as cancer. Therefore, real-time detection of changes in viscosity in living cells is of great importance. Fluorescent molecular rotors play a critical role in detecting changes in cellular viscosity. Developing red emission viscosity probes with large Stokes shifts and high sensitivity and specificity remains an urgent and important topic. Herein, a novel viscosity-sensitive fluorescent probe (TCF-VIS1) with a large stokes shift and red emission was prepared based on the 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran (TCF) skeleton. Due to intramolecular rotation, the probe itself does not fluorescence at low viscosity. With the increase in viscosity, the rotation of TCF-VIS1 is limited, and its fluorescence is obviously enhanced. The probe has the advantages of simple preparation, large Stokes shift, good sensitivity and selectivity, and low cytotoxicity, which make it successfully used for viscosity detection in living cells. Moreover, TCF-VIS1 showed its potential for cancer diagnosis at the cell level and in tumor-bearing mice by detecting viscosity. Therefore, the probe is expected to enrich strategies for the detection of viscosity in biological systems and offer a potential tool for cancer diagnosis.


Asunto(s)
Colorantes Fluorescentes , Animales , Colorantes Fluorescentes/química , Viscosidad , Ratones , Humanos , Línea Celular Tumoral , Neoplasias/diagnóstico , Neoplasias/patología , Imagen Óptica/métodos
5.
Molecules ; 29(10)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38792070

RESUMEN

Ligustrazine (TMP) is the main active ingredient extracted from Rhizoma Chuanxiong, which is used in the treatment of cardiovascular and cerebrovascular diseases, with the drawback of being unstable and readily sublimated. Cocrystal technology is an effective method to improve the stability of TMP. Three benzoic acid compounds including P-aminobenzoic acid (PABA), 3-Aminobenzoic acid (MABA), and 3,5-Dinitrobenzoic acid (DNBA) were chosen for co-crystallization with TMP. Three novel cocrystals were obtained, including TMP-PABA (1:2), TMP-MABA (1.5:1), and TMP-DNBA (0.5:1). Hygroscopicity was characterized by the dynamic vapor sorption (DVS) method. Three cocrystals significantly improved the hygroscopicity stability, and the mass change in TMP decreased from 25% to 1.64% (TMP-PABA), 0.12% (TMP-MABA), and 0.03% (TMP-DNBA) at 90% relative humidity. The melting points of the three cocrystals were all higher than TMP, among which the TMP-DNBA cocrystal had the highest melting point and showed the best stability in reducing hygroscopicity. Crystal structure analysis shows that the mesh-like structure formed by the O-H⋯N hydrogen bond in the TMP-DNBA cocrystal was the reason for improving the stability of TMP.


Asunto(s)
Cristalización , Pirazinas , Humectabilidad , Pirazinas/química , Estabilidad de Medicamentos , Enlace de Hidrógeno , Cristalografía por Rayos X , Estructura Molecular , Difracción de Rayos X
6.
Molecules ; 29(8)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38675529

RESUMEN

It is well known that daidzein has various significant medicinal values and health benefits, such as anti-oxidant, anti-inflammatory, anti-cancer, anti-diabetic, cholesterol lowering, neuroprotective, cardioprotective and so on. To our disappointment, poor solubility, low permeability and inferior bioavailability seriously limit its clinical application and market development. To optimize the solubility, permeability and bioavailability of daidzein, the cocrystal of daidzein and piperazine was prepared through a scientific and reasonable design, which was thoroughly characterized by single-crystal X-ray diffraction, powder X-ray diffraction, Fourier transform infrared spectroscopy, differential scanning calorimetry and thermogravimetric analysis. Combining single-crystal X-ray diffraction analysis with theoretical calculation, detailed structural information on the cocrystal was clarified and validated. In addition, a series of evaluations on the pharmacogenetic properties of the cocrystal were investigated. The results indicated that the cocrystal of daidzein and piperazine possessed the favorable stability, increased solubility, improved permeability and optimized bioavailability of daidzein. Compared with the parent drug, the formation of cocrystal, respectively, resulted in 3.9-, 3.1-, 4.9- and 60.8-fold enhancement in the solubility in four different media, 4.8-fold elevation in the permeability and 3.2-fold in the bioavailability of daidzein. Targeting the pharmaceutical defects of daidzein, the surprising elevation in the solubility, permeability and bioavailability of daidzein was realized by a clever cocrystal strategy, which not only devoted assistance to the market development and clinical application of daidzein but also paved a new path to address the drug-forming defects of insoluble drugs.


Asunto(s)
Disponibilidad Biológica , Isoflavonas , Permeabilidad , Piperazina , Solubilidad , Isoflavonas/química , Isoflavonas/farmacocinética , Piperazina/química , Cristalización , Difracción de Rayos X , Espectroscopía Infrarroja por Transformada de Fourier , Animales , Cristalografía por Rayos X , Rastreo Diferencial de Calorimetría , Humanos
7.
Angew Chem Int Ed Engl ; : e202405418, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38686901

RESUMEN

Purely organic molecules with room-temperature phosphorescence (RTP) are potential luminescent materials with high exciton utilization for organic light-emitting diodes (OLEDs), but those exhibiting superb electroluminescence (EL) performances are rarely explored, mainly due to their long phosphorescence lifetimes. Herein, a robust purely organic RTP molecule, 3,6-bis(5-phenylindolo[3,2-a]carbazol-12(5H)-yl)-xanthen-9-one (3,2-PIC-XT), is developed. The neat film of 3,2-PIC-XT shows strong green RTP with a very short lifetime (2.9 µs) and a high photoluminescence quantum yield (72 %), and behaviors balanced bipolar charge transport. The RTP nature of 3,2-PIC-XT is validated by steady-state and transient absorption and emission spectroscopies, and the working mechanism is deciphered by theoretical simulation. Non-doped multilayer OLEDs using thin neat films of 3,2-PIC-XT furnish an outstanding external quantum efficiency (EQE) of 24.91 % with an extremely low roll-off (1.6 %) at 1000 cd m-2. High-performance non-doped top-emitting and tandem OLEDs are also achieved, providing remarkable EQEs of 24.53 % and 42.50 %, respectively. Delightfully, non-doped simplified OLEDs employing thick neat films of 3,2-PIC-XT are also realized, furnishing an excellent EQE of 17.79 % and greatly enhanced operational lifetime. The temperature-dependent and transient EL spectroscopies demonstrate the electrophosphorescence attribute of 3,2-PIC-XT. These non-doped OLEDs are the best devices based on purely organic RTP materials reported so far.

8.
Small ; : e2308468, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38009497

RESUMEN

Developing deep-blue emitters for organic light-emitting diodes (OLEDs) is critical but challenging, which requires a good balance between light color, exciton utilization, and photoluminescence quantum yield (PLQY) of solid film. Herein, a high-quality deep-blue emitter, abbreviated 2TriPE-CzMCN, is designed by introducing an aggregation-induced emission (AIE) group into a crossed long-short axis (CLSA) skeleton. Theoretical and experimental investigations reveal that the CLSA molecular design can achieve a balance between deep-blue emission and triplet-excitons utilization, while the high PLQY of the solid film resulting from the AIE feature helps to improve the performance of OLEDs. Consequently, when 2TriPE-CzMCN is used as the emitting dopant, the OLED exhibits a deep-blue emission at 430 nm with a record-high maximum external quantum efficiency (EQE) of 8.84%. When 2TriPE-CzMCN serves as the host material, the sensitized monochrome orange and two-color white OLEDs (WOLEDs) realize high EL performances that exceed the efficiency limit of conventional fluorescent OLEDs. Moreover, high-performance three-color WOLEDs with a color rendering index (CRI) exceeding 90 and EQE up to 18.08% are achieved by using 2TriPE-CzMCN as the blue-emitting source. This work demonstrates that endowing CLSA molecule with AIE feature is an effective strategy for developing high-quality deep-blue emitters, and high-performance versatile OLEDs can be realized through rational device engineering.

9.
Anal Biochem ; 680: 115313, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37678583

RESUMEN

As newly developed synthetic enzymes with exceptional catalytic capabilities and outstanding stability, nanozymes have drawn considerable interest in the realm of sensing. Using a simple hydrothermal process, iodine and copper-doped carbon dots (Cu,I-CDs) with simulated enzymes were fabricated in the current investigation. Cu,I-CDs demonstrate peroxidase-mimicking function together with high catalytic effectiveness due to aforementioned features. This led to generation of a colorimetric sensor for quick and accurate quantitative assessment of morphine (MOR). The outcomes showed the method's usefulness for the colorimetric detection of MOR. The linear range for MOR detection is 0.25-25 µg/mL having a reduced detection limit of 64 ng/mL. This sensor's successful use in the analysis of MOR in biological material is more noteworthy.


Asunto(s)
Colorimetría , Cobre , Carbono , Catálisis , Derivados de la Morfina
10.
Org Biomol Chem ; 21(26): 5413-5418, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37334910

RESUMEN

An inverse-electron-demand aza-Diels-Alder reaction between 4,4-dicyano-2-methylenebut-3-enoates and 1,3,5-triazinanes under catalyst-free and additive-free conditions was developed, which provided a highly convenient and straightforward method to construct a series of polyfunctionalized tetrahydropyridines in high yields. This strategy features numerous advantages, including high efficiency, good functional group tolerance, broad substrate scope, and environmentally friendly conditions.

11.
Phys Chem Chem Phys ; 25(6): 4598-4603, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36723048

RESUMEN

The stability and degradation mechanism of phosphorescent organic light emitting diodes (OLEDs) has been an unresolved problem in the past decades. Here, we found that electron accumulation at the interface between the electron blocking layer and the emitting layer is one of the reasons for device degradation. By inserting a thin layer with a shallower LUMO level than that of the electron transporting layer between the emitting layer and the electron transporting layer, we successfully reduced the density of electrons at the interface and greatly improved the lifetime of the resulting green phosphorescent OLEDs. The half decay lifetime LT50 at the initial luminance of 1000 cd m-2 reached as high as 399 h, which is 1.7 times longer than that of the compared device without a thin layer.

12.
Phys Chem Chem Phys ; 25(43): 29451-29458, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37882197

RESUMEN

The lifetime of blue organic light-emitting diodes (OLEDs) has always been a big challenge in practical applications. Blue OLEDs based on triplet-triplet annihilation (TTA) up-conversion materials have potential to achieve long lifetimes due to fusing two triplet excitons to one radiative singlet exciton, but there is a lack of an in-depth understanding of exciton dynamics on degradation mechanisms. In this work, we established a numerical model of exciton dynamics to study the impact factors in the stability of doped blue OLEDs based on TTA up-conversion hosts. By performing transient electroluminescence experiments, the intrinsic parameters related to the TTA up-conversion process of aging devices were determined. By combining the change of excess charge density in the emitting layer (EML) with aging time, it is concluded that the TTA materials are damaged by the excess electrons in the EML during ageing, which is the main degradation mechanism of OLEDs. This work provides a theoretical basis for preparing long-lifetime blue fluorescent OLEDs.

13.
Phys Chem Chem Phys ; 25(39): 26878-26884, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37782517

RESUMEN

Aggregation-induced delayed fluorescence (AIDF) materials have great potential in non-doped OLEDs due to their high photoluminescence (PL) quantum efficiency in film, high exciton utilization in the aggregated state and negligible efficiency roll-off at high luminance. However, their efficient mechanism in OLEDs is not yet well understood. Here, the exciton dynamics are used to investigate the electroluminescence (EL) mechanism of an AIDF emitter (4-(10H-phenoxazin-10-yl)phenyl)-(9-phenyl-9H-carbazol-3-yl)methanone (CP-BP-PXZ) in detail. It can be seen that the high efficiency and negligible efficiency roll-off in non-doped OLEDs based on CP-BP-PXZ as the emitter are ascribed to the effective reverse intersystem crossing (RISC) from high level triplet T2 to singlet S1 in the aggregated state. Furthermore, CP-BP-PXZ also exhibits excellent properties as a phosphor host due to its good AIDF properties. Thus, high-efficiency red phosphorescent OLEDs with low roll-off efficiency are successfully fabricated based on CP-BP-PXZ as the host. The maximum external quantum efficiency (EQEmax) reaches 23% and is maintained at 21% at a luminance of 1000 cd m-2.

14.
Mikrochim Acta ; 190(7): 259, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37306766

RESUMEN

A novel Fe3O4-MWCNTs@Hemin nanocomposite was synthesized using hemin and Fe3O4 with multi-walled carbon nanotubes (MWCNTs) by one-step hydrothermal methods. The as-prepared Fe3O4-MWCNTs@Hemin nanocomposites exhibited excellent peroxidase-like activities in the activation of H2O2. The mechanisms, kinetics, and catalytic performances of Fe3O4-MWCNTs@Hemin were systematically studied. Fe3O4-MWCNTs@Hemin can oxidize dopamine (DA) to dopaquinone in the presence of H2O2, and the intermediate products dopaquinone can further react with ß-naphthol to generate a highly fluorescent derivative at 415 nm excitation wavelength. Therefore, an innovative fluorescence platform for the detection of DA was developed. The fluorescence intensity increased linearly with DA concentration in the range 0.33 to 107 µM, with a low detection limit of 0.14 µM. Due to the excellent activity, substrate universality, fast response, high selectivity, and sensitivity of Fe3O4-MWCNTs@Hemin, the proposed fluorescence method was used to analyze complex biological blood samples with a satisfactory result. It demonstrated the significant potential for developing effective and dependable fluorescent analytical platforms for preserving human health.


Asunto(s)
Dopamina , Nanotubos de Carbono , Humanos , Colorantes , Hemina , Peróxido de Hidrógeno , Peroxidasas
15.
Sensors (Basel) ; 23(15)2023 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-37571590

RESUMEN

To solve the problem of anomaly detection in annular metal turning surfaces, this paper develops an anomaly detection algorithm based on a priori information and a multi-scale self-referencing template by combining the imaging characteristics of annular workpieces. First, the annular metal turning surface is unfolded into a rectangular expanded image using bilinear interpolation to facilitate subsequent algorithm development. Second, the grayscale information from the positive samples is used to obtain the a priori information, and a multi-scale self-referencing template method is used to obtain its own multi-scale information. Then, the phase error and large-size anomaly interference problems of the self-referencing method are overcome by combining the a priori information with its own information, and an accurate response to anomalous regions of various sizes is realized. Finally, the segmentation completeness of the anomalous region is improved by utilizing the region growing method. The experimental results show that the proposed method achieves a mean pixel AUROC of 0.977, and the mean M_IOU of segmentation reaches 0.788. In terms of efficiency, this method is also much more efficient than the commonly used anomaly detection algorithms. The proposed method can achieve rapid and accurate detection of defects in annular metal turning surfaces and has good industrial application value.

16.
Angew Chem Int Ed Engl ; 62(43): e202310388, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37668100

RESUMEN

Aggregation-induced emission (AIE) luminogens (AIEgens) are attractive for the construction of non-doped blue organic light-emitting diodes (OLEDs) owning to their high emission efficiency in the film state. However, the large internal inversion rate (kIC (Tn) ) between high-lying triplet levels (Tn ) and Tn-1 causes a huge loss of triplet excitons, resulting in dissatisfied device performance of these AIEgens-based non-doped OLEDs. Herein, we designed and synthesized a blue luminogen of DPDPB-AC by fusing an AIEgen of TPB-AC and a DMPPP, which feature hot exciton and triplet-triplet annihilation (TTA) up-conversion process, respectively. DPDPB-AC successfully inherits the AIE feature and excellent horizontal dipole orientation of TPB-AC. Furthermore, it owes smaller kIC (Tn) than TPB-AC. When DPDPB-AC was applied in OLED as non-doped emitting layer, an outstanding external quantum efficiency of 10.3 % and an exceptional brightness of 69311 cd m-2 were achieved. The transient electroluminescent measurements and steady-state dynamic analysis confirm that both TTA and hot exciton processes contribute to such excellent device performance. This work provides a new insight into the design of efficient organic fluorophores by managing high-lying triplet excitons.

17.
J Biol Chem ; 296: 100574, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33757767

RESUMEN

PorX/PorY is a two-component system (TCS) of Porphyromonas gingivalis that governs transcription of numerous genes including those encoding a type IX secretion system (T9SS) for gingipain secretion and heme accumulation. Here, an in vitro analysis showed that the response regulator PorX specifically bound to two regions in the promoter of porT, a known PorX-regulated T9SS gene, thus demonstrating that PorX/PorY can directly regulate specific target genes. A truncated PorX protein containing the N-terminal receiver and effector domains retained a wild-type ability in both transcription regulation and heme accumulation, ruling out the role of the C-terminal ALP domain in gene regulation. The PorX/PorY system was the only TCS essential for heme accumulation and concomitantly responded to hemin to stimulate transcription of several known PorX-dependent genes in a concentration-dependent manner. We found that PorX/PorY activated the sigH gene, which encodes a sigma factor known for P. gingivalis adaptation to hydrogen peroxide (H2O2). Consistently, both ΔporX and ΔsigH mutants were susceptible to H2O2, suggesting a PorX/PorY-σH regulatory cascade to confer resistance to oxidative stress. Furthermore, the ΔporX mutant became susceptible to high hemin levels that could induce oxidative stress. Therefore, a possible reason why hemin activates PorX/PorY is to confer resistance to hemin-induced oxidative stress. We also demonstrated that PorX/PorY was essential for P. gingivalis virulence because the ΔporX mutant was avirulent in a mouse model. Specifically, this TCS was required for the repression of proinflammatory cytokines secreted by dendritic cells and T cells in the P. gingivalis-infected mice.


Asunto(s)
Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos/metabolismo , Porphyromonas gingivalis/metabolismo , Factores de Virulencia/metabolismo , Animales , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Ratones , Mutación , Porphyromonas gingivalis/genética , Porphyromonas gingivalis/fisiología , Procesamiento Proteico-Postraduccional , Factores de Virulencia/genética
18.
Small ; 18(41): e2204029, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36084169

RESUMEN

In this work, a near-ultraviolet (NUV) emitter, 2MCz-CNMCz, with hot-exciton property is designed based on a "long-short axis" strategy, which exhibits good thermal stability, bipolar carrier transport ability, and high T1 energy level. Its nondoped NUV organic light-emitting diode (OLED) achieves a record maximum external quantum efficiency (ηext ) of 7.76%, with a peak at 404 nm and CIE coordinates of (0.158, 0.039). The corresponding high exciton utilization efficiency (ηr ) in the electroluminescence process reveals its potential as a functional sensitizing host. As expected, the TBPe-based blue fluorescent OLED with 2MCz-CNMCz as the host material shows better efficiency and lower efficiency roll-off than that with traditional host material mCP. Meanwhile, the Ir complexes-based green/yellow/red phosphorescent OLEDs with 2MCz-CNMCz host are also fabricated, reaching high ηext values of 26.1%, 30.4%, and 20.4%, respectively, and displaying negligible efficiency roll-offs at 1000 cd m-2 , which are among the best OLED performances based on the same emitters. To the authors' best knowledge, this is the first report on the design of high-quality universal and functional host material, and may bring new inspiration to the preparation of high-efficiency, low roll-off, full-color OLEDs.

19.
Sensors (Basel) ; 22(15)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35957234

RESUMEN

Edge detection of ground objects is a typical task in the field of remote sensing and has advantages in accomplishing many complex ground object extraction tasks. Although recent mainstream edge detection methods based on deep learning have significant effects, these methods have a very high dependence on the quantity and quality of samples. Moreover, using datasets from other domains in detection tasks often leads to degraded network performance due to variations in the ground objects in different regions. If this problem can be solved to allow datasets from other domains to be reused, the number of labeled samples required in the new task domain can be reduced, thereby shortening the task cycle and reducing task costs. In this paper, we propose a weakly supervised domain adaptation method to address the high dependence of edge extraction networks on samples. The domain adaptation is performed on the edge level and the semantic level, which prevents deviations in the semantic features that are caused by the overgeneralization of edge features. Additionally, the effectiveness of our proposed domain adaptation module is verified. Finally, we demonstrate the superior edge extraction performance of our method in the SEGOS edge extraction network in contrast to other edge extraction methods.


Asunto(s)
Tecnología de Sensores Remotos , Semántica
20.
Molecules ; 27(6)2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35335384

RESUMEN

Solvent-assisted grinding (SAG) and solution slow evaporation (SSE) methods are generally used for the preparation of cocrystals. However, even by using the same solvent, active pharmaceutical ingredient (API), and cocrystal coformer (CCF), the cocrystals prepared using the two methods above are sometimes inconsistent. In the present study, in the cocrystal synthesis of praziquantel (PRA) with polyhydroxy phenolic acid, including protocatechuic acid (PA), gallic acid (GA), and ferulic acid (FA), five different cocrystals were prepared using SAG and SSE. Three of the cocrystals prepared using the SAG method have the structural characteristics of carboxylic acid dimer, and two cocrystals prepared using the SSE method formed cocrystal solvates with the structural characteristics of carboxylic acid monomer. For phenolic acids containing only one phenolic hydroxyl group (ferulic acid), when preparing cocrystals with PRA by using SAG and SSE, the same product was obtained. In addition, the weak molecular interactions that were observed in the cocrystal are explained at the molecular level by using theoretical calculation methods. Finally, the in vitro solubility of cocrystals without crystal solvents and in vivo bioavailability of PRA-FA were evaluated to further understand the influence on the physicochemical properties of API for the introduction of CCF.


Asunto(s)
Praziquantel , Disponibilidad Biológica , Cristalización/métodos , Hidroxibenzoatos , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA