Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Small ; 20(1): e2304938, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37649198

RESUMEN

Materials with various single-transition metal atoms dispersed in nitrogenated carbons (M─N─C, M = Fe, Co, and Ni) are synthesized as cathodes to investigate the electrocatalytic behaviors focusing on their enhancement mechanism for performance of Li-S batteries. Results indicate that the order of both electrocatalytic activity and rate capacity for the M─N─C catalysts is Co > Ni > Fe, and the Co─N─C delivers the highest capacity of 1100 mAh g-1 at 1 C and longtime stability at a decay rate of 0.05% per cycle for 1000 cycles, demonstrating excellent battery performance. Theoretical calculations for the first time reveal that M─N─N─C catalysts enable direct conversion of Li2 S6 to Li2 S rather than Li2 S4 to Li2 S by stronger adsorption with Li2 S6 , which also has an order of Co > Ni > Fe. And Co─N─C has the strongest adsorption energy, not only rendering the highest electrocatalytic activity, but also depressing the polysulfides' dissolution into electrolyte for the longest cycle life. This work offers an avenue to design the next generation of highly efficient sulfur cathodes for high-performance Li-S batteries, while shedding light on the fundamental insight of single metal atomic catalytic effects on Li-S batteries.

2.
Chem Rev ; 122(23): 17028-17072, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36137296

RESUMEN

Adsorption energy (AE) of reactive intermediate is currently the most important descriptor for electrochemical reactions (e.g., water electrolysis, hydrogen fuel cell, electrochemical nitrogen fixation, electrochemical carbon dioxide reduction, etc.), which can bridge the gap between catalyst's structure and activity. Tracing the history and evolution of AE can help to understand electrocatalysis and design optimal electrocatalysts. Focusing on oxygen electrocatalysis, this review aims to provide a comprehensive introduction on how AE is selected as the activity descriptor, the intrinsic and empirical relationships related to AE, how AE links the structure and electrocatalytic performance, the approaches to obtain AE, the strategies to improve catalytic activity by modulating AE, the extrinsic influences on AE from the environment, and the methods in circumventing linear scaling relations of AE. An outlook is provided at the end with emphasis on possible future investigation related to the obstacles existing between adsorption energy and electrocatalytic performance.


Asunto(s)
Hidrógeno , Oxígeno , Adsorción , Fijación del Nitrógeno , Agua
3.
Angew Chem Int Ed Engl ; 63(11): e202319685, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38151975

RESUMEN

Glycerol is a byproduct of biodiesel production. Selective photoelectrochemical oxidation of glycerol to high value-added chemicals offers an economical and sustainable approach to transform renewable feedstock as well as store green energy at the same time. In this work, we synthesized monoclinic WO3 nanosheets with exposed (002) facets, which could selectively oxidize glycerol to glyceric acid (GLYA) with a photocurrent density of 1.7 mA cm-2 , a 73 % GLYA selectivity and a 39 % GLYA Faradaic efficiency at 0.9 V vs. reversible hydrogen electrode (RHE) under AM 1.5G illumination (100 mW cm-2 ). Compared to (200) facets exposed WO3 , a combination of experiments and theoretical calculations indicates that the superior performance of selective glycerol oxidation mainly originates from the better charge separation and prolonged carrier lifetime resulted from the plenty of surface trapping states, lower energy barrier of the glycerol-to-GLYA reaction pathway, more abundant active sites and stronger oxidative ability of photogenerated holes on the (002) facets exposed WO3 . Our findings show great potential to significantly contribute to the sustainable and environmentally friendly chemical processes via designing high performance photoelectrochemical cell via facet engineering for renewable feedstock transformation.

4.
J Am Chem Soc ; 145(24): 13038-13047, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37285479

RESUMEN

The design of active and low-cost electrocatalyst for hydrogen evolution reaction (HER) is the key to achieving a clean hydrogen energy infrastructure. The most successful design principle of hydrogen electrocatalyst is the activity volcano plot, which is based on Sabatier principle and has been used to understand the exceptional activity of noble metal and design of metal alloy catalysts. However, this application of volcano plot in designing single-atom electrocatalysts (SAEs) on nitrogen doped graphene (TM/N4C catalysts) for HER has been less successful due to the nonmetallic nature of the single metal atom site. Herein, by performing ab initio molecular dynamics simulations and free energy calculations on a series of SAEs systems (TM/N4C with TM = 3d, 4d, or 5d metals), we find that the strong charge-dipole interaction between the negatively charged *H intermediate and the interfacial H2O molecules could alter the transition path of the acidic Volmer reaction and dramatically raise its kinetic barrier, despite its favorable adsorption free energy. Such kinetic hindrance is also experimentally confirmed by electrochemical measurements. By combining the hydrogen adsorption free energy and the physics of competing interfacial interactions, we propose a unifying design principle for engineering the SAEs used for hydrogen energy conversion, which incorporates both thermodynamic and kinetic considerations and allows going beyond the activity volcano model.

5.
J Am Chem Soc ; 145(21): 11829-11836, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37199388

RESUMEN

In the electrochemical CO2 reduction reaction (CO2RR), CO2 activation is always the first step, followed by the subsequent hydrogenation. The catalytic performance of CO2RR is intrinsically restricted by the competition between molecular CO2 activation and CO2 reduction product release. Here, we design a heteronuclear Fe1-Mo1 dual-metal catalytic pair on ordered porous carbon that features a high catalytic performance for driving electrochemical CO2 reduction to CO. Combining real-time near-ambient pressure X-ray photoelectron spectroscopy, operando 57Fe Mössbauer spectroscopy, and in situ attenuated total reflectance surface-enhanced infrared absorption spectroscopy measurements with density functional theory calculations, chemical adsorption of CO2 is observed on the Fe1-Mo1 catalytic pair through a bridge configuration, which prompts the bending of the CO2 molecule for CO2 activation and then facilitates the subsequent hydrogeneration reaction. More importantly, the dynamic adsorption configuration transition from the bridge configuration of CO2 on Fe1-Mo1 to the linear configuration of CO on the Fe1 center results in breaking the scaling relationship in CO2RR, simultaneously promoting the CO2 activation and the CO release.

6.
Small ; 19(29): e2300587, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37035961

RESUMEN

Precise structural control has attracted tremendous interest in pursuit of the tailoring of physical properties. Here, this work shows that through strong ligand-mediated interfacial energy control, Au-Cu2 O dumbbell structures where both the Au nanorod (AuNR) and the partially encapsulating Cu2 O domains are highly crystalline. The synthetic advance allows physical separation of the Au and Cu2 O domains, in addition to the use of long nanorods with tunable absorption wavelength, and the crystalline Cu2 O domain with well-defined facets. The interplay of plasmon and Schottky effects boosts the photocatalytic performance in the model photodegradation of methyl orange, showing superior catalytic efficiency than the AuNR@Cu2 O core-shell structures. In addition, compared to the typical core-shell structures, the AuNR-Cu2 O dumbbells can effectively electrochemically catalyze the CO2 to C2+ products (ethanol and ethylene) via a cascade reaction pathway. The excellent dual function of both photo- and electrocatalysis can be attributed to the fine physical separation of the crystalline Au and Cu2 O domains.

7.
Angew Chem Int Ed Engl ; 62(11): e202216645, 2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36546885

RESUMEN

Polymer electrolyte membrane water electrolysis (PEMWE) has been regarded as a promising technology for renewable hydrogen production. However, acidic oxygen evolution reaction (OER) catalysts with long-term stability impose a grand challenge in its large-scale industrialization. In this review, critical factors that may lead to catalyst's instability in couple with potential solutions are comprehensively discussed, including mechanical peeling, substrate corrosion, active-site over-oxidation/dissolution, reconstruction, oxide crystal structure collapse through the lattice oxygen-participated reaction pathway, etc. Last but not least, personal prospects are provided in terms of rigorous stability evaluation criteria, in situ/operando characterizations, economic feasibility and practical electrolyzer consideration, highlighting the ternary relationship of structure evolution, industrial-relevant activity and stability to serve as a roadmap towards the ultimate application of PEMWE.

8.
Angew Chem Int Ed Engl ; 62(44): e202311550, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37666796

RESUMEN

Single-atom catalysts exhibit superior CO2 -to-CO catalytic activity, but poor kinetics of proton-coupled electron transfer (PCET) steps still limit the overall performance toward the industrial scale. Here, we constructed a Fe-P atom paired catalyst onto nitrogen doped graphitic layer (Fe1 /PNG) to accelerate PCET step. Fe1 /PNG delivers an industrial CO current of 1 A with FECO over 90 % at 2.5 V in a membrane-electrode assembly, overperforming the CO current of Fe1 /NG by more than 300 %. We also decrypted the synergistic effects of the P atom in the Fe-P atom pair using operando techniques and density functional theory, revealing that the P atom provides additional adsorption sites for accelerating water dissociation, boosting the hydrogenation of CO2 , and enhancing the activity of CO2 reduction. This atom-pair catalytic strategy can modulate multiple reactants and intermediates to break through the inherent limitations of single-atom catalysts.

9.
J Am Chem Soc ; 144(5): 2255-2263, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35094512

RESUMEN

Noble metals have an irreplaceable role in catalyzing electrochemical reactions. However, large overpotential and poor long-term stability still prohibit their usage in many reactions (e.g., oxygen evolution/reduction). With regard to the low natural abundance, the improvement of their overall electrocatalytic performance (activity, selectivity, and stability) was urgently necessary. Herein, strong metal-support interaction (SMSI) was modulated through an unprecedented time-dependent mechanical milling method on Pd-loaded oxygenated TiC electrocatalysts. The encapsulation of Pd surfaces with reduced TiO2-x overlayers is precisely controlled by the mechanical milling time. This encapsulation induced a valence band restructuring and lowered the d-band center of surface Pd atoms. For hydrogen peroxide electrosynthesis through the two-electron oxygen reduction reaction (ORR), these electronic and geometric modifications resulted in optimal adsorption energies of reaction intermediates. Thus, SMSI phenomena not only enhanced electrocatalytic activity and selectivity but also created an encapsulating oxide overlayer that protected the Pd species, increasing its long-term stability. This SMSI induced by mechanical milling was also extended to other noble metal systems, showing great promise for the large-scale production of highly stable and tunable electrocatalysts.

10.
Zhongguo Zhong Yao Za Zhi ; 47(9): 2509-2515, 2022 May.
Artículo en Zh | MEDLINE | ID: mdl-35531698

RESUMEN

A high-throughput screening machine learning model for mitochondrial function was constructed, and compounds of Aco-niti Lateralis Radix Praeparata were predicted. Deoxyaconitine with the highest score and benzoylmesaconine with the lowest score among the compounds screened by the model were selected for mitochondrial mechanism analysis. Mitochondrial function data were collected from PubChem and Tox21 databases. Random forest and gradient boosted decision tree algorithms were separately used for mo-deling, and ECFP4(extended connectivity fingerprint, up to four bonds) and Mordred descriptors were employed for training, respectively. Cross-validation test was carried out, and balanced accuracy(BA) and overall accuracy were determined to evaluate the performance of different combinations of models and obtain the optimal algorithm and hyperparameters for modeling. The data of Aconiti Lateralis Radix Praeparata compounds in TCMSP database were collected, and after prediction and screening by the constructed high-throughput screening machine learning model, deoxyaconitine and benzoylmesaconine were selected to measure mitochondrial membrane potential, reactive oxygen species(ROS) level and protein expression of B-cell lymphoma 2(Bcl-2), Bcl-2-associated X protein(Bax) and peroxisome proliferator-activated receptor-γ-coactivator 1α(PGC-1α). The results showed that the model constructed using gradient boosted decision tree+Mordred algorithm performed better, with a cross-validation BA of 0.825 and a test set accuracy of 0.811. Deoxyaconitine and benzoylmesaconine changed the ROS level(P<0.001), mitochondrial membrane potential(P<0.001), and protein expression of Bcl-2(P<0.001, P<0.01) and Bax(P<0.001), and deoxyaconitine increased the expression of PGC-1α protein(P<0.01). The high-throughput screening model for mitochondrial function constructed by gradient boosted decision tree+Mordred algorithm was more accurate than that by random forest+ECFP4 algorithm, which could be used to build an algorithm model for subsequent research. Deoxyaconitine and benzoylmesaconine affected mitochondrial function. However, deoxyaconitine with higher score also affected mitochondrial biosynthesis by regulating PGC-1α protein.


Asunto(s)
Aconitum , Medicamentos Herbarios Chinos , Aconitum/química , Algoritmos , Medicamentos Herbarios Chinos/química , Ensayos Analíticos de Alto Rendimiento , Aprendizaje Automático , Mitocondrias , Especies Reactivas de Oxígeno , Proteína X Asociada a bcl-2
11.
Anal Chem ; 93(31): 10789-10797, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34212722

RESUMEN

Single-atom catalysis efficiently exposes the catalytic sites to reactant molecules while rendering opportunity to investigate the catalysis mechanisms at atomic levels for scientific insights. Here, for the first time, atomically dispersed Co atoms are synthesized as biomimetic "enzymes" to monitor superoxide anions (O2•-), delivering ultraordinary high sensitivity (710.03 µA·µM-1·cm-2), low detection limit (1.5 nM), and rapid response time (1.2 s), ranking the best among all the reported either bioenzymatic or biomimetic O2•- biosensors. The sensor is further successfully employed to real-time monitor O2•- released from living cells. Moreover, theoretical calculation and analysis associated with experimental results discover that a mode of end adsorption of the negatively charged O2•- on the Co3+ atom rather than a bridge or/and side adsorption of the two atoms of O2•- on two Co3+ atoms, respectively, plays an important role in the single-atomic catalysis toward O2•- oxidation, which not only facilitates faster electron transfer but also offers better selectivity. This work holds great promise for an inexpensive and sensitive atomic biomimetic O2•- sensor for bioresearch and clinic diagnosis, while revealing that the adsorption mode plays a critical role in single-atom catalysis for a fundamental insight.


Asunto(s)
Técnicas Biosensibles , Adsorción , Catálisis , Oxidación-Reducción , Superóxidos
12.
Anal Chem ; 93(11): 4916-4923, 2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33719390

RESUMEN

Single-atom catalysts have attracted numerous attention due to the high utilization of metallic atoms, abundant active sites, and highly catalytic activities. Herein, a single-atom ruthenium biomimetic enzyme (Ru-Ala-C3N4) is prepared by dispersing Ru atoms on a carbon nitride support for the simultaneous electrochemical detection of dopamine (DA) and uric acid (UA), which are coexisting important biological molecules involving in many physiological and pathological aspects. The morphology and elemental states of the single-atom Ru catalyst are studied by transmission electron microscopy, energy dispersive X-ray elemental mapping, high-angle annular dark field-scanning transmission electron microscopy, and high-resolution X-ray photoelectron spectroscopy. Results show that Ru atoms atomically disperse throughout the C3N4 support by Ru-N chemical bonds. The electrochemical characterizations indicate that the Ru-Ala-C3N4 biosensor can simultaneously detect the oxidation of DA and UA with a separation of peak potential of 180 mV with high sensitivity and excellent selectivity. The calibration curves for DA and UA range from 0.06 to 490 and 0.5 to 2135 µM with detection limits of 20 and 170 nM, respectively. Moreover, the biosensor was applied to detect DA and UA in real biological serum samples using the standard addition method with satisfactory results.


Asunto(s)
Rutenio , Ácido Úrico , Ácido Ascórbico , Biomimética , Dopamina , Técnicas Electroquímicas , Electrodos
13.
EMBO Rep ; 19(3)2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29348145

RESUMEN

Aberrant centrosome organisation with ensuing alterations of microtubule nucleation capacity enables tumour cells to proliferate and invade despite increased genomic instability. CEP192 is a key factor in the initiation process of centrosome duplication and in the control of centrosome microtubule nucleation. However, regulatory means of CEP192 have remained unknown. Here, we report that FBXL13, a binding determinant of SCF (SKP1-CUL1-F-box)-family E3 ubiquitin ligases, is enriched at centrosomes and interacts with the centrosomal proteins Centrin-2, Centrin-3, CEP152 and CEP192. Among these, CEP192 is specifically targeted for proteasomal degradation by FBXL13. Accordingly, induced FBXL13 expression downregulates centrosomal γ-tubulin and disrupts centrosomal microtubule arrays. In addition, depletion of FBXL13 induces high levels of CEP192 and γ-tubulin at the centrosomes with the consequence of defects in cell motility. Together, we characterise FBXL13 as a novel regulator of microtubule nucleation activity and highlight a role in promoting cell motility with potential tumour-promoting implications.


Asunto(s)
Centrosoma/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas F-Box/genética , Tubulina (Proteína)/genética , Ubiquitina-Proteína Ligasas/genética , Animales , Proteínas de Unión al Calcio/genética , Proteínas de Ciclo Celular/genética , Línea Celular , Movimiento Celular/genética , Proliferación Celular/genética , Regulación de la Expresión Génica , Inestabilidad Genómica/genética , Homeostasis/genética , Humanos , Ratones , Microtúbulos/genética , Complejo de la Endopetidasa Proteasomal/genética , Proteínas Ligasas SKP Cullina F-box/genética
14.
Angew Chem Int Ed Engl ; 59(2): 798-803, 2020 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-31657106

RESUMEN

Designing effective electrocatalysts for the carbon dioxide reduction reaction (CO2 RR) is an appealing approach to tackling the challenges posed by rising CO2 levels and realizing a closed carbon cycle. However, fundamental understanding of the complicated CO2 RR mechanism in CO2 electrocatalysis is still lacking because model systems are limited. We have designed a model nickel single-atom catalyst (Ni SAC) with a uniform structure and well-defined Ni-N4 moiety on a conductive carbon support with which to explore the electrochemical CO2 RR. Operando X-ray absorption near-edge structure spectroscopy, Raman spectroscopy, and near-ambient X-ray photoelectron spectroscopy, revealed that Ni+ in the Ni SAC was highly active for CO2 activation, and functioned as an authentic catalytically active site for the CO2 RR. Furthermore, through combination with a kinetics study, the rate-determining step of the CO2 RR was determined to be *CO2 - +H+ →*COOH. This study tackles the four challenges faced by the CO2 RR; namely, activity, selectivity, stability, and dynamics.

15.
Acta Pharmacol Sin ; 38(5): 719-732, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28239160

RESUMEN

An increasing number of cases of herb-induced liver injury (HILI) have been reported, presenting new clinical challenges. In this study, taking Polygonum multiflorum Thunb (PmT) as an example, we proposed a computational systems toxicology approach to explore the molecular mechanisms of HILI. First, the chemical components of PmT were extracted from 3 main TCM databases as well as the literature related to natural products. Then, the known targets were collected through data integration, and the potential compound-target interactions (CTIs) were predicted using our substructure-drug-target network-based inference (SDTNBI) method. After screening for hepatotoxicity-related genes by assessing the symptoms of HILI, a compound-target interaction network was constructed. A scoring function, namely, Ascore, was developed to estimate the toxicity of chemicals in the liver. We conducted network analysis to determine the possible mechanisms of the biphasic effects using the analysis tools, including BiNGO, pathway enrichment, organ distribution analysis and predictions of interactions with CYP450 enzymes. Among the chemical components of PmT, 54 components with good intestinal absorption were used for analysis, and 2939 CTIs were obtained. After analyzing the mRNA expression data in the BioGPS database, 1599 CTIs and 125 targets related to liver diseases were identified. In the top 15 compounds, seven with Ascore values >3000 (emodin, quercetin, apigenin, resveratrol, gallic acid, kaempferol and luteolin) were obviously associated with hepatotoxicity. The results from the pathway enrichment analysis suggest that multiple interactions between apoptosis and metabolism may underlie PmT-induced liver injury. Many of the pathways have been verified in specific compounds, such as glutathione metabolism, cytochrome P450 metabolism, and the p53 pathway, among others. Hepatitis symptoms, the perturbation of nine bile acids and yellow or tawny urine also had corresponding pathways, justifying our method. In conclusion, this computational systems toxicology method reveals possible toxic components and could be very helpful for understanding the mechanisms of HILI. In this way, the method might also facilitate the identification of novel hepatotoxic herbs.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Fallopia multiflora/toxicidad , Biología Computacional , Bases de Datos de Compuestos Químicos , Fallopia multiflora/química , Modelos Biológicos , Toxicología
16.
J Am Chem Soc ; 138(31): 9978-85, 2016 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-27441842

RESUMEN

A number of important reactions such as the oxygen evolution reaction (OER) are catalyzed by transition metal oxides (TMOs), the surface reactivity of which is rather elusive. Therefore, rationally tailoring adsorption energy of intermediates on TMOs to achieve desirable catalytic performance still remains a great challenge. Here we show the identification of a general and tunable surface structure, coordinatively unsaturated metal cation (MCUS), as a good surface reactivity descriptor for TMOs in OER. Surface reactivity of a given TMO increases monotonically with the density of MCUS, and thus the increase in MCUS improves the catalytic activity for weak-binding TMOs but impairs that for strong-binding ones. The electronic origin of the surface reactivity can be well explained by a new model proposed in this work, wherein the energy of the highest-occupied d-states relative to the Fermi level determines the intermediates' bonding strength by affecting the filling of the antibonding states. Our model for the first time well describes the reactivity trends among TMOs, and would initiate viable design principles for, but not limited to, OER catalysts.

17.
J Am Chem Soc ; 138(9): 3183-9, 2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-26866915

RESUMEN

Due to the limited electronic conductivity, the application of many metal oxides that may have attractive (photo)-electrochemical properties has been limited. Regarding these issues, incorporating low-dimensional conducting scaffolds into the electrodes or supporting the metal oxides onto the conducting networks are common approaches. However, some key electronic processes like interfacial charge transfer are far from being consciously concerned. Here we use a carbon-TiO2 contact as a model system to demonstrate the electronic processes occurring at the metal-semiconductor interface. To minimize the energy dissipation for fast transfer of electrons from semiconductor to carbon scaffolds, facilitating electron tunneling while avoiding high energy-consuming thermionic emission is desired, according to our theoretical simulation of the voltammetric behaviors. To validate this, we manage to sandwich ultrathin TiO2 interlayers with heavy electronic doping between the carbon conductors and dopant-free TiO2. The radially graded distribution of the electronic doping along the cross-sectional direction of carbon conductor realized by immobilizing the dopant species on the carbon surface can minimize the energy consumption for contacts to both the carbon and the dopant-free TiO2. Our strategy provides an important requirement for metal oxide electrode design.

18.
Chem Soc Rev ; 44(10): 3295-346, 2015 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-25855947

RESUMEN

Carbon nanotubes are promising materials for various applications. In recent years, progress in manufacturing and functionalizing carbon nanotubes has been made to achieve the control of bulk and surface properties including the wettability, acid-base properties, adsorption, electric conductivity and capacitance. In order to gain the optimal benefit of carbon nanotubes, comprehensive understanding on manufacturing and functionalizing carbon nanotubes ought to be systematically developed. This review summarizes methodologies of manufacturing carbon nanotubes via arc discharge, laser ablation and chemical vapor deposition and functionalizing carbon nanotubes through surface oxidation and activation, doping of heteroatoms, halogenation, sulfonation, grafting, polymer coating, noncovalent functionalization and nanoparticle attachment. The characterization techniques detecting the bulk nature and surface properties as well as the effects of various functionalization approaches on modifying the surface properties for specific applications in catalysis including heterogeneous catalysis, photocatalysis, photoelectrocatalysis and electrocatalysis are highlighted.

19.
Small ; 11(18): 2115-31, 2015 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-25641821

RESUMEN

Semiconductor-based photocatalysis and photoelectrocatalysis have received considerable attention as alternative approaches for solar energy harvesting and storage. The photocatalytic or photoelectrocatalytic performance of a semiconductor is closely related to the design of the semiconductor at the nanoscale. Among various nanostructures, one-dimensional (1D) nanostructured photocatalysts and photoelectrodes have attracted increasing interest owing to their unique optical, structural, and electronic advantages. In this article, a comprehensive review of the current research efforts towards the development of 1D semiconductor nanomaterials for heterogeneous photocatalysis and photoelectrocatalysis is provided and, in particular, a discussion of how to overcome the challenges for achieving full potential of 1D nanostructures is presented. It is anticipated that this review will afford enriched information on the rational exploration of the structural and electronic properties of 1D semiconductor nanostructures for achieving more efficient 1D nanostructure-based photocatalysts and photoelectrodes for high-efficiency solar energy conversion.

20.
J Am Chem Soc ; 136(43): 15310-8, 2014 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-25290360

RESUMEN

In photoelectrochemical cells, there exists a competition between transport of electrons through the porous semiconductor electrode toward the conducting substrate and back-reaction of electrons to recombine with oxidized species on the semiconductor-electrolyte interface, which determines the charge collection efficiency and is strongly influenced by the density and distribution of electronic states in band gap and architectures of the semiconductor electrodes. One-dimensional (1D) anatase TiO2 nanostructures are promising to improve charge transport in photoelectrochemical devices. However, the conventional preparation of 1D anatase nanostructures usually steps via a titanic acid intermediate (e.g., H2Ti3O7), which unavoidably introduces electronic defects into the host lattice, resulting in undesired shielding of the intrinsic role of dimensionality. Here, we manage to promote the 1D growth of anatase TiO2 nanostructures by adjusting the growth kinetics, which allows us to grow single-crystalline anatase TiO2 nanorods through a one-step hydrothermal reaction. The synthesized anatase nanorods possess a lower density of trap states and thus can simultaneously facilitate the diffusion-driven charge transport and suppress the electron recombination. Moreover, the electronically boundary free nanostructures significantly enhance the trap-free charge diffusion coefficient of the anatase nanorods, which enables the emergence of the intrinsic superiority of dimensionality. By virtue of these merits, the anatase nanorods synthesized in this work take obvious advantages over the conventional anatase counterparts in photoelectrochemical systems (e.g., dye-sensitized solar cells) by showing more efficient charge transport and collection and higher energy conversion efficiency.


Asunto(s)
Nanotecnología , Nanotubos/química , Temperatura , Titanio/química , Amoníaco/química , Suministros de Energía Eléctrica , Electroquímica , Electrodos , Transporte de Electrón , Cinética , Semiconductores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA