Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Nanosci Nanotechnol ; 13(2): 813-8, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23646521

RESUMEN

The adsorption and dissociation of H2O in Pd nanowire have been investigated by the density functional theory (DFT) studies. First, we construct Pd nanowire by basin-hopping method and use DFT calculation to find the ground state of Pd nanowire, and put the H2O molecular on different adsorption sites and the H2O molecule is found to preferentially absorb on a Top (T) site. The H2O molecule lies parallel to the Pd nanowire surface, while the O atom is bound at a Top site. We also calculate the partial density of state (PDOS) and election density difference. In addition, our calculated results demonstrate that the bonding between H2O and Pd nanowire is contributed by d orbitals of Pd nanowire and p orbitals of O atom. The nudged elastic band (NEB) method is applied to locate transition states and minimum energy pathways (MEP), and we discuss the dissociation behavior of the side-on H2O molecules on the top site of hexagonal and tetragonal planes, respectively.

2.
J Nanosci Nanotechnol ; 13(2): 894-7, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23646537

RESUMEN

The mechanical properties of Ni-Ta crystallizationand binary bulk metallic glasses (BMG) were investigated for this study at the nanoscale. First, the Ta9Ni3 crystals are formed by space group, and structures with different ratios (Ta1Ni1, BTa8Ni4, BTa9Ni3, BTa7Ni5) were put into unit cell randomly. The optimizations of BMG structures are performed by Density functional theory (DFT) calculation to find the stable amorphous structures and corresponding energy. The FMM is utilized to obtain the suitable parameters of tight-binding potential bystable amorphous structures and corresponding energies. Finally, we employ molecular dynamics (MD) simulation to study mechanical properties of Ni/Ta crystallization and BMG, such as atomistic stress-strain, plastic and elastic deformation, and elastic modulus.

3.
J Nanosci Nanotechnol ; 13(2): 1068-73, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23646573

RESUMEN

The adsorption and dissociation properties of carbon monoxide (CO) molecule on tungsten W(n) (n = 10-15) nanoparticles have been investigated by density-functional theory (DFT) calculations. The lowest-energy structures for W(n) (n = 10-15) nanoparticles are found by the basin-hopping method and big-bang method with the modified tight-binding many-body potential. We calculated the corresponding adsorption energies, C-O bond lengths and dissociation barriers for adsorption of CO on nanoparticles. The electronic properties of CO on nanoparticles are studied by the analysis of density of state and charge density. The characteristic of CO on W(n) nanoparticles are also compared with that of W bulk.

4.
J Nanosci Nanotechnol ; 13(2): 1256-60, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23646614

RESUMEN

The configurations and corresponding adsorption energies of Rh(n) (n = 4-13) nanoclusters on the boron nitride sheet are investigated by density functional theory (DFT). We use the force-matching method (FMM) to modify parameters of Morse and Tersoff potential functions. To elucidate the dynamical behaviors of Rh nanoclusters on the boron nitride sheet, molecular dynamics (MD) is applied with modified Morse potential function parameter. Finally, the square displacement (SD) is utilized the dynamics behavior of different size Rh nanoclusters at different temperatures.

5.
J Nanosci Nanotechnol ; 13(2): 1414-7, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23646650

RESUMEN

The studies of silica nanoclusters are of substantial interest for large potential in applications as diverse as photonics/optics, microelectronics and catalysis. In this study, we used the basing-hopping method with Buckingham potential to get the stable structures of silica nanoclusters ((SiO2)(n) = 1-13). The global minimum geometry of silica nanoclusters were determined by density functional theory calculation. We investigated the energy gap, binding energy and second order energy difference of nanoclusters to determine their structural stability with different sizes. We also calculate the second-order energy difference, binding energy to determine the magic number.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA