RESUMEN
Silicon carbide, as a third-generation semiconductor material, plays a pivotal role in various advanced technological applications. Its exceptional stability under extreme conditions has garnered a significant amount of attention. These superior characteristics make silicon carbide an ideal candidate material for high-frequency, high-power electronic devices and applications in harsh environments. In particular, corrosion resistance in natural or artificially acidic and alkaline environments limits the practical application of many other materials. In fields such as chemical engineering, energy conversion, and environmental engineering, materials often face severe chemical erosion, necessitating materials with excellent chemical stability as foundational materials, carriers, or reaction media. Silicon carbide exhibits outstanding performance under these conditions, demonstrating significant resistance to corrosive substances such as hydrochloric acid, sulfuric acid, nitric acid, and alkaline substances such as potassium hydroxide and sodium hydroxide. Despite the well-known chemical stability of silicon carbide, the stability conditions of its different types (such as 3C-, 4H-, and 6H-SiC polycrystals) in acidic and alkaline environments, as well as the specific corrosion mechanisms and differences, warrant further investigation. This Review not only delves deeply into the detailed studies related to this topic but also highlights the current applications of different silicon carbide polycrystals in chemical reaction systems, energy conversion equipment, and recycling processes. Through a comprehensive analysis, this Review aims to bridge research gaps, offering a comparative analysis of the advantages and disadvantages between different polymorphs. It provides material scientists, engineers, and developers with a thorough understanding of silicon carbide's behavior in various chemical environments. This work will propel the research and development of silicon carbide materials under extreme conditions, especially in areas where chemical stability is crucial for device performance and durability. It lays a solid foundation for ultra-high-power, high-integration, high-reliability module architectures, supercomputing chips, and highly safe long-life batteries.
RESUMEN
BACKGROUND: Atrazine (ATR), a commonly used herbicide, is linked to dopaminergic neurotoxicity, which may cause symptoms resembling Parkinson's disease (PD). This study aims to reveal the molecular regulatory networks responsible for ATR exposure and its effects on dopaminergic neurotoxicity based on an integration strategy. METHODS: Our approach involved network toxicology, construction of protein-protein interaction (PPI) networks, gene ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, as well as molecular docking techniques. Subsequently, we validated the predicted results in PC12 cells in vitro. RESULTS: An integrated analysis strategy indicating that 5 hub targets, including mitogen-activated protein kinase 3 (Mapk3), catalase (Cat), heme oxygenase 1 (Hmox1), tumor protein p53 (Tp53), and prostaglandin-endoperoxide synthase 2 (Ptgs2), may play a crucial role in ATR-induced dopaminergic injury. Molecular docking indicated that the 5 hub targets exhibited certain binding activity with ATR. Cell counting kit-8 (CCK8) results illustrated a dose-response relationship in PC12 cells. Real-time quantitative polymerase chain reaction (RT-qPCR) displayed notable changes in the expression of hub targets mRNA levels, with the exception of Mapk3. Western blotting results suggested that ATR treatment in PC12 cells resulted in an upregulation of the Cat, Hmox1, and p-Mapk3 protein expression levels while causing a downregulation in Tp53, Ptgs2, and Mapk3. CONCLUSION: Our findings indicated that 5 hub targets identified could play a vital role in ATR-induced dopaminergic neurotoxicity in PC12 cells. These results provide preliminary support for further investigation into the molecular mechanism of ATR-induced toxicity.
Asunto(s)
Atrazina , Neuronas Dopaminérgicas , Herbicidas , Simulación del Acoplamiento Molecular , Atrazina/toxicidad , Animales , Células PC12 , Ratas , Herbicidas/toxicidad , Neuronas Dopaminérgicas/efectos de los fármacos , Mapas de Interacción de Proteínas , Dopamina/metabolismoRESUMEN
Surface-enhanced Raman scattering (SERS) with high molecular sensitivity and specificity is a powerful nondestructive analytical tool. Since its discovery, SERS measurements have suffered from the vulnerability of calibration curve, which makes quantification analysis a great challenge. In this work, we report a robust calibration method by introducing a referenced measurement as the intensity standard. This intensity reference not only has the advantages of the internal standard method such as reflecting the SERS substrate enhancement, but also avoids the introduction of competing adsorption between target molecules and the internal standard. Based on the normalized calibration curve, the magnitude of the R6G concentration can be well evaluated from 10-7 M to 10-12 M. Furthermore, we demonstrate that this pseudo-internal standard method can also work well using a different type of molecule as the reference. This SERS calibration method would be beneficial for the development of quantitative SERS analysis.
RESUMEN
Controlling the synthesis of metallic nanostructures for high quality surface-enhanced Raman scattering (SERS) materials has long been a central task of nanoscience and nanotechnology. In this work, silver aggregates with different surface morphologies were controllably synthesized on a glass-solution interface via a facile laser-induced reduction method. By correlating the surface morphologies with their SERS abilities, optimal parameters (laser power and irradiation time) for SERS aggregates synthesis were obtained. Importantly, the characteristics for largest near-field enhancement were identified, which are closely packed nanorice and flake structures with abundant surface roughness. These can generate numerous hot spots with huge enhancement in nanogaps and rough surface. These results provide an understanding of the correlation between morphologies and SERS performance, and could be helpful for developing optimal and applicable SERS materials.
RESUMEN
OBJECTIVE: To study the effect of aluminume adjuvant and immunization schedule on immunogenicity of Sabin inactivated poliovirus vaccine. METHODS: Four batches of Sabin IPV were produced by different concentrations of type 1, 2, and 3 poliovirus and administrated on three-dose schedule at 0, 1, 2 months and 0, 2, 4 months on rats. Serum samples were collected one month after each dose and neutralizing antibody titers against three types poliovirus were determined by micro-neutralization assay. RESULTS: The GMTs of neutralizing antibodies against three types poliovirus increased significantly and the seropositivity rates were 100% in all groups after 3 doses. There was no significant difference between two immunization schedules, and the 0, 2, 4 month schedule could induce higher level neutralizing antibody compared to the 0, 1, 2 month schedule. The groups with aluminum adjuvant could induce higher level neutralizing antibody compared to the groups without adjuvant. CONCLUSION: Aluminum djuvant and immunization schedule could improve the immunogenicity of Sabin IPV.
Asunto(s)
Adyuvantes Inmunológicos/farmacología , Hidróxido de Aluminio/farmacología , Anticuerpos Antivirales/sangre , Esquemas de Inmunización , Vacuna Antipolio Oral/inmunología , Animales , Femenino , Masculino , Ratas , Ratas WistarRESUMEN
OBJECTIVE: To express the recombinant D protein in prokaryotic expression system solubly and make preparation for producing D-carrier conjugate vaccine next step. METHODS: The hpd gene fragment removed of signal peptide from genomic DNA of Hib CMCC was inserted into pET43. 1a. The recombinant plasmid was transformed to competent E. coli BL21 (DE3) for expression under induction of IPTG. The expressed recombination protein was precipitated with ammonium sulfate, purified by DEAE anion exchange column chromatography and identified for reactogenicity by Western Blot. RESULTS: The expressed recombination protein, in a soluble form, constained about 50% of total somatic protein and showed specific reaction with the HIB antisera after preliminary purification. CONCLUSION: The D protein recombined expression plasmid was constructed successfully and expressed D protein in prokaryotic cells in a solube form.
Asunto(s)
Proteínas Bacterianas/genética , Proteínas Portadoras/genética , Haemophilus influenzae tipo b/genética , Inmunoglobulina D/genética , Lipoproteínas/genética , Western Blotting , Escherichia coli/genética , Plásmidos , Proteínas Recombinantes/biosíntesis , SolubilidadRESUMEN
Both mammalian tensin-like phosphatase 1 [TEP1; also known as phosphatase deleted on chromosome 10 (PTEN) or mutated in multiple advanced cancer 1 (MMAC1)] and Saccharomyces cerevisiae ScTep1p are involved in the phosphatidylinositol pathway. In this study, we identified the Fusarium graminearum locus FGSG_04982.3 (named FgTEP1) as the functional homologue of ScTEP1 in the sensitivity of S. cerevisiae cells to wortmannin, the phosphatidylinositol-3 kinase inhibitor. Deletion of FgTEP1 causes F. graminearum mycelial growth to become sensitive to lithium and reduces the production of conidia. Although conidia lacking FgTEP1 germinate normally, they show reduced germination efficiency in the presence of wortmannin. In addition, we showed that deletion of FgTEP1 reduces the virulence of F. graminearum on wheat. These results indicate that FgTep1p is linked to the phosphatidylinositol-3 kinase signalling pathway in this plant fungal pathogen.
Asunto(s)
Proteínas Fúngicas/metabolismo , Fusarium/enzimología , Fusarium/patogenicidad , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/fisiología , Triticum/microbiología , Virulencia/fisiología , Proteínas Fúngicas/genética , Fusarium/efectos de los fármacos , Fusarium/genética , Litio/farmacología , Reacción en Cadena de la Polimerasa , Transducción de Señal/genética , Esporas Fúngicas/genética , Esporas Fúngicas/crecimiento & desarrollo , Virulencia/genéticaRESUMEN
Type 2C protein phosphatases (PP2Cs) are monomeric protein serine/threonine phosphatases that play various roles in eukaryotic organisms. In this study, we characterized the PP2C encoded by FgPTC1 in Fusarium graminearum, the major causal agent of Fusarium head blight on wheat and barley. We found that deletion of FgPTC1 delays the mycelium growth of F. graminearum in response to lithium. Consistently, FgPTC1 complemented the function of ScPTC1 in lithium toxicity in Saccharomyces cerevisiae. Furthermore, we showed that deletion of FgPTC1 attenuated the virulence of F. graminearum on wheat. Therefore, FgPTC1 plays an important role in regulating the hyphal growth and virulence of F. graminearum.