Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 633
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Chem Soc Rev ; 53(1): 163-203, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38019124

RESUMEN

Electrocatalytic high-throughput seawater electrolysis for hydrogen production is a promising green energy technology that offers possibilities for environmental and energy sustainability. However, large-scale application is limited by the complex composition of seawater, high concentration of Cl- leading to competing reaction, and severe corrosion of electrode materials. In recent years, extensive research has been conducted to address these challenges. Metal nitrides (MNs) with excellent chemical stability and catalytic properties have emerged as ideal electrocatalyst candidates. This review presents the electrode reactions and basic parameters of the seawater splitting process, and summarizes the types and selection principles of conductive substrates with critical analysis of the design principles for seawater electrocatalysts. The focus is on discussing the properties, synthesis, and design strategies of MN-based electrocatalysts. Finally, we provide an outlook for the future development of MNs in the high-throughput seawater electrolysis field and highlight key issues that require further research and optimization.

2.
Anal Chem ; 96(4): 1693-1699, 2024 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-38231554

RESUMEN

Major depressive disorder (MDD) is a prevalent brain disorder affecting more than 2% of the world's population. Due to the lack of well-specific biomarkers, it is difficult to distinguish MDD from other diseases with similar clinical symptoms (such as Alzheimer's disease and cerebral thrombosis). In this work, we provided a strategy to address this issue by constructing a combinatorial biomarker of serum glial fibrillary acidic protein (GFAP) and neurofilament light chain (NFL). To achieve the convenient and sensitive detection of two proteins, we developed an electrochemical immunosandwich sensor using two metal-ion-doped carbon dots (Pb-CDs and Cu-CDs) as probes for signal output. Each probe contains approximately 300 Pb2+ or 200 Cu2+, providing excellent signal amplification. This method achieved detection limits of 0.3 pg mL-1 for GFAP and 0.2 pg mL-1 for NFL, lower than most of the reported detection limits. Analysis of real serum samples showed that the concentration ratio of GFAP to NFL, which is associated with the relative degree of brain inflammation and neurodegeneration, is suitable for not only distinguishing MDD from healthy individuals but also specifically distinguishing MDD from Alzheimer's disease and cerebral thrombosis. The good specificity gives the combinatorial GFAP/NFL biomarker broad application prospects in the screening, diagnosis, and treatment of MDD.


Asunto(s)
Enfermedad de Alzheimer , Trastorno Depresivo Mayor , Trombosis Intracraneal , Humanos , Trastorno Depresivo Mayor/diagnóstico , Enfermedad de Alzheimer/diagnóstico , Proteína Ácida Fibrilar de la Glía , Filamentos Intermedios , Plomo , Biomarcadores
3.
Anal Chem ; 96(16): 6180-6185, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38593062

RESUMEN

Chemical recycling is a promising approach to reduce plastic pollution. Timely and accurate size analysis of produced nanoplastics is necessary to monitor the process and assess the quality of chemical recycling. In this work, a sandwich-type microelectrode sensor was developed for the size assessment of nanoplastics. ß-Mercaptoethylamine was modified on the microelectrode to enhance its surface positive charge density. Polystyrene (PS) nanoplastics were captured on the sensor through electrostatic interactions. Ferrocene was used as an electrochemical beacon and attached to PS via hydrophobic interactions. The results show a nonlinear dependence of the sensor's current response on the PS particle size. The size resolving ability of the microelectrode is mainly attributed to the small size of the electrode and the resulting attenuation of the electric field strength. For mixed samples with different particle sizes, this method can provide accurate average particle sizes. Through an effective pretreatment process, the method can be applied to PS nanoplastics with different surface properties, ensuring its application in evaluating different chemical recycling methods.

4.
Anal Chem ; 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38335322

RESUMEN

The configuration elucidation of organic molecules continues to pose significant challenges in studies involving stereochemistry. Nuclear magnetic resonance (NMR) techniques are powerful for obtaining such structural information. Anisotropic NMR techniques, such as measurement of residual dipolar couplings (RDCs) and residual chemical shift anisotropies (RCSAs), complementing isotropic NMR parameters, provide relative configuration information. RCSAs provide valuable structural information, especially for nonprotonated carbons, yet have been severely underutilized due to the lack of an easily operational alignment medium capable of rapid transition from anisotropic to isotropic environments, especially in aqueous conditions. In this study, an oligopeptide-based alignment media (FK)4 is presented for RCSA measurements. Temperature variation manipulates the assembly of (FK)4, yielding tunable anisotropic and isotropic phases without the requirement of any special devices or time-consuming correction procedures during data analysis. Decent observed ΔΔRCSA values from sp3 carbons benefit the utilization of RCSA measurements in the structural elucidation of organic molecules highly composed with sp3 carbons. Moreover, the (FK)4 alignment medium is applicable for both RDC and RCSA measurements in one sample, further advancing the configuration analysis of molecules of interest.

5.
BMC Plant Biol ; 24(1): 451, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789940

RESUMEN

Root-knot nematodes (RKNs) infect host plants and obtain nutrients such as sugars for their own development. Therefore, inhibiting the nutrient supply to RKNs may be an effective method for alleviating root-knot nematode disease. At present, the pathway by which sucrose is unloaded from the phloem cells to giant cells (GCs) in root galls and which genes related to sugar metabolism and transport play key roles in this process are unclear. In this study, we found that sugars could be unloaded into GCs only from neighboring phloem cells through the apoplastic pathway. With the development of galls, the contents of sucrose, fructose and glucose in the galls and adjacent tissue increased gradually. SUT1, SUT2, SWEET7a, STP10, SUS3 and SPS1 may provide sugar sources for GCs, while STP1, STP2 and STP12 may transport more sugar to phloem parenchyma cells. At the early stage of Meloidogyne incognita infestation, the sucrose content in tomato roots and leaves increased, while the glucose and fructose contents decreased. SWEET7a, SPS1, INV-INH1, INV-INH2, SUS1 and SUS3 likely play key roles in root sugar delivery. These results elucidated the pathway of sugar unloading in tomato galls and provided an important theoretical reference for eliminating the sugar source of RKNs and preventing root-knot nematode disease.


Asunto(s)
Raíces de Plantas , Tumores de Planta , Solanum lycopersicum , Tylenchoidea , Tylenchoidea/fisiología , Animales , Solanum lycopersicum/parasitología , Solanum lycopersicum/metabolismo , Raíces de Plantas/parasitología , Raíces de Plantas/metabolismo , Tumores de Planta/parasitología , Enfermedades de las Plantas/parasitología , Sacarosa/metabolismo , Azúcares/metabolismo , Metabolismo de los Hidratos de Carbono
6.
Small ; : e2401053, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38597730

RESUMEN

Single-component electrocatalysts generally lead to unbalanced adsorption of OH- and urea during urea oxidation reaction (UOR), thus obtaining low activity and selectivity especially when oxygen evolution reaction (OER) competes at high potentials (>1.5 V). Herein, a cross-alignment strategy of in situ vertically growing Ni(OH)2 nanosheets on 2D semiconductor g-C3N4 is reported to form a hetero-structured electrocatalyst. Various spectroscopy measurements including in situ experiments indicate the existence of enhanced internal electric field at the interfaces of vertical Ni(OH)2 and g-C3N4 nanosheets, favorable for balancing adsorption of reaction intermediates. This heterojunction electrocatalyst shows high-selectivity UOR compared to pure Ni(OH)2, even at high potentials (>1.5 V) and large current density. The computational results show the vertical heterojunction could steer the internal electric field to increase the adsorption of urea, thus efficiently avoiding poisoning of strongly adsorbed OH- on active sites. A membrane electrode assembly (MEA)-based electrolyzer with the heterojunction anode could operate at an industrial-level current density of 200 mA cm-2. This work paves an avenue for designing high-performance electrocatalysts by vertical cross-alignments of active components.

7.
J Med Virol ; 96(1): e29355, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38179882

RESUMEN

It is widely acknowledged that infectious diseases have wrought immense havoc on human society, being regarded as adversaries from which humanity cannot elude. In recent years, the advancement of Artificial Intelligence (AI) technology has ushered in a revolutionary era in the realm of infectious disease prevention and control. This evolution encompasses early warning of outbreaks, contact tracing, infection diagnosis, drug discovery, and the facilitation of drug design, alongside other facets of epidemic management. This article presents an overview of the utilization of AI systems in the field of infectious diseases, with a specific focus on their role during the COVID-19 pandemic. The article also highlights the contemporary challenges that AI confronts within this domain and posits strategies for their mitigation. There exists an imperative to further harness the potential applications of AI across multiple domains to augment its capacity in effectively addressing future disease outbreaks.


Asunto(s)
COVID-19 , Enfermedades Transmisibles , Humanos , Inteligencia Artificial , Pandemias , Trazado de Contacto , Enfermedades Transmisibles/diagnóstico
8.
J Phys Chem A ; 128(12): 2383-2392, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38479752

RESUMEN

Calculating the thermal rate constants of elementary combustion reactions is of great importance in theoretical chemistry. Machine learning has become a powerful, data-driven method for predicting rate constants nowadays. Recently, the molecular similarity combined with the topological indices were proposed to represent the hydrogen abstraction reactions of alkane [J. Chem. Inf. Model. 2023, 63, 5097-5106], which are, however, not applicable to alkane cracking reactions, another important class of combustion reactions, due to the cleavage of the C-C bond. In this work, a new feature selection scheme is proposed to describe both bimolecular and unimolecular cracking reactions. Molecular descriptors are elaborately selected individually for both reactants and products from those generated by the open-source software RDKit. Machine learning models combined with these molecular descriptors are proven to have the ability to accurately predict rate constants of both the hydrogen abstraction reactions of alkanes by CH3 and the alkane cracking reactions. The average deviation of the XGB-FNN model for prediction is around 60% for the hydrogen abstraction reactions of alkanes and 100% for the alkane cracking reactions. It is expected that the descriptors proposed in this work can be applied to build machine learning models for other reactions.

9.
Cell Mol Life Sci ; 80(2): 50, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36694058

RESUMEN

The transdifferentiation from cardiac fibroblasts to myofibroblasts is an important event in the initiation of cardiac fibrosis. However, the underlying mechanism is not fully understood. Circ-sh3rf3 (circular RNA SH3 domain containing Ring Finger 3) is a novel circular RNA which was induced in hypertrophied ventricles by isoproterenol hydrochloride, and our work has established that it is a potential regulator in cardiac hypertrophy, but whether circ-sh3rf3 plays a role in cardiac fibrosis remains unclear, especially in the conversion of cardiac fibroblasts into myofibroblasts. Here, we found that circ-sh3rf3 was down-regulated in isoproterenol-treated rat cardiac fibroblasts and cardiomyocytes as well as during fibroblast differentiation into myofibroblasts. We further confirmed that circ-sh3rf3 could interact with GATA-4 proteins and reduce the expression of GATA-4, which in turn abolishes GATA-4 repression of miR-29a expression and thus up-regulates miR-29a expression, thereby inhibiting fibroblast-myofibroblast differentiation and myocardial fibrosis. Our work has established a novel Circ-sh3rf3/GATA-4/miR-29a regulatory cascade in fibroblast-myofibroblast differentiation and myocardial fibrosis, which provides a new therapeutic target for myocardial fibrosis.


Asunto(s)
Cardiomiopatías , Fibroblastos , Fibrosis , Miofibroblastos , ARN Circular , Animales , Ratas , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Fibroblastos/metabolismo , Fibrosis/genética , Fibrosis/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Miocitos Cardíacos/metabolismo , Miofibroblastos/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
10.
Nanomedicine ; 55: 102723, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38007064

RESUMEN

OBJECTIVE: Osteoarthritis (OA) is characterized by progressive cartilage degeneration and absence of curative therapies. Therefore, more efficient therapies are compellingly needed. Both mesenchymal stem cells (MSCs)-derived extracellular vesicles (EVs) and Icariin (ICA) are promising for repair of cartilage defect. This study proposes that ICA may be combined to potentiate the cartilage repair capacity of MSC-EVs. MATERIALS AND METHODS: MSC-EVs were isolated from sodium alginate (SA) and hyaluronic acid (HA) composite hydrogel (SA-HA) cell spheroid culture. EVs and ICA were combined in SA-HA hydrogel to test therapeutic efficacy on cartilage defect in vivo. RESULTS: EVs and ICA were synergistic for promoting both proliferation and migration of MSCs and inflammatory chondrocytes. The combination therapy led to strikingly enhanced repair on cartilage defect in rats, with mechanisms involved in the concomitant modulation of both cartilage degradation and synthesis makers. CONCLUSION: The MSC-EVs-ICA/SA-HA hydrogel potentially constitutes a novel therapy for cartilage defect in OA.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Osteoartritis , Animales , Ratas , Hidrogeles/farmacología , Ácido Hialurónico/farmacología , Ácido Hialurónico/metabolismo , Cartílago , Condrocitos/metabolismo , Osteoartritis/tratamiento farmacológico , Regeneración , Vesículas Extracelulares/metabolismo
11.
Mikrochim Acta ; 191(2): 114, 2024 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-38286853

RESUMEN

The detection of botulinum neurotoxin A (BoNT/A) endopeptidase activity by pregnancy test paper based on human chorionic gonadotropin (hCG)-functionalized peptide-modified magnetic nanoparticles (MNs) is described for the first time. HCG-functionalized SNAP-25 peptide substrate with hydrolysis recognition sites was optimally designed. HCG can be recognized by pregnancy test strips. BoNT/A light chain (BoNT-LcA) is the central part of the endopeptidase function in holotoxin, which can specifically hydrolyze SNAP-25 peptide to release the hCG-peptide probe, and the hCG-peptide probe released can be quantitatively detected by pregnancy test strips, achieving indirect determination of BoNT/A. By quantifying the T-line color intensity of test strips, the visual detection limit for BoNT-LcA is 12.5 pg/mL, and the linear range of detection for BoNT-LcA and BoNT/A holotoxin was 100 pg/mL to 1 ng/mL and 25 to 250 ng/mL. The ability of the method to quantify BoNT/A was validated in human serum samples. This method shows the potential for sensitive detecting BoNT/A and has prospects for the diagnosis and prognosis of clinical botulism.


Asunto(s)
Toxinas Botulínicas Tipo A , Glicósidos , Nanopartículas de Magnetita , Pruebas de Embarazo , Triterpenos , Humanos , Femenino , Embarazo , Endopeptidasas , Gonadotropina Coriónica
12.
Mikrochim Acta ; 191(6): 316, 2024 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-38724679

RESUMEN

An ultra-sensitive photoelectrochemical (PEC) sensor based on perovskite composite was developed for the determination of alkaline phosphatase (ALP) in human serum. In contrast to CsPbBr3 or Y6 that generated anodic current, the heterojunction of CsPbBr3/Y6 promoted photocarriers to separate and generated cathodic photocurrent. Ascorbic acid (AA) was produced by ALP hydrolyzing L-ascorbic acid 2-phosphate trisodium salt (AAP), which can combine with the holes on the photoelectrode surface, accelerating the transmission of photogenerated carriers, leading to enhanced photocurrent intensity. Thus, the enhancement of PEC current was linked to ALP activity. The PEC sensor exhibits good sensitivity for detection of ALP owing to the unique photoelectric properties of the CsPbBr3/Y6 heterojunction. The detection limit of the sensor was 0.012 U·L-1 with a linear dynamic range of 0.02-2000 U·L-1. Therefore, this PEC sensing platform shows great potential for the development of different PEC sensors.


Asunto(s)
Fosfatasa Alcalina , Ácido Ascórbico , Técnicas Electroquímicas , Electrodos , Límite de Detección , Óxidos , Procesos Fotoquímicos , Titanio , Fosfatasa Alcalina/química , Fosfatasa Alcalina/sangre , Fosfatasa Alcalina/metabolismo , Humanos , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Ácido Ascórbico/química , Ácido Ascórbico/sangre , Ácido Ascórbico/análogos & derivados , Titanio/química , Óxidos/química , Compuestos de Calcio/química , Técnicas Biosensibles/métodos
13.
BMC Oral Health ; 24(1): 471, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637799

RESUMEN

OBJECT: This study aimed to investigate the changes in the translucency and color of four different multi-layered zirconia materials when the sintering temperature were inaccurate. MATERIALS AND METHODS: Two hundred zirconia samples (11 × 11 × 1.0 mm) of four multi-layered zirconia, Upcera TT-GT (UG), Upcera TT-ML (UM), Cercon xt ML (CX), and Lava Esthetic (LE), were divided into five subgroups according to the sintering temperature: L1 (5% lower temperature), L2 (2.5% lower temperature), R (recommended sintering temperature), H2 (2.5% higher temperature), H1 (5% higher temperature). After sintering, color coordinates were measured. Then the translucency parameter (TP) values, and the color differences (between the inaccurate sintering temperature and the recommended temperature) of each zirconia specimen were calculated. Statistical analysis was performed by using three-way ANOVA tests, the one-way ANOVA, and Tukey's post hoc test. RESULTS: Three-way ANOVA results showed that material type, sintering temperature, specimen section, and their interactions significantly influenced the TP values (except for the interactions of specimen section and sintering temperature) (P < .05). TP values of zirconia specimens were significantly different in the inaccurate sintering temperatures (P < .05), except for the cervical and body sections of UG group (P > .05). Compared with recommended sintering temperature, higher sintering temperature caused higher TP values for CX, but lower for LE. Three-way ANOVA results showed that material type, sintering temperature, and their interactions significantly influenced the ∆E00 values (P < .05). There were no significant differences in ∆E00 values of UM and CX groups at different inaccurate sintering temperatures, and were clinical imperception (except for UM-L1) (∆E00 < 1.25). ∆E00 values of all zirconia specimens showed clinically acceptable (∆E00 < 2.23). CONCLUSION: The deviations in sintering temperature significantly influenced the translucency and color of tested multi-layered zirconia. The trends of translucency in the multi-layered zirconia depended on material type and the color changes of all zirconia materials were clinically acceptable at inaccurate sintering temperatures.


Asunto(s)
Cerámica , Circonio , Humanos , Temperatura , Ensayo de Materiales , Propiedades de Superficie , Color
14.
Angew Chem Int Ed Engl ; 63(28): e202405498, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38651652

RESUMEN

Three new nitrides La3MN5 (M=Cr, Mn, and Mo) have been synthesized using a high pressure azide route. These are the first examples of ternary Cs3CoCl5-type nitrides, and show that this (MN4)NLa3 antiperovskite structure type may be used to stabilise high oxidation-state transition metals in tetrahedral molecular [MN4]n- nitridometallate anions. Magnetic measurements confirm that Cr and Mo are in the M6+ state, but the M=Mn phase has an anomalously small paramagnetic moment and large cell volume. Neutron powder diffraction data are fitted using an anion-excess La3MnN5.30 model (space group I4/mcm, a=6.81587(9) Šand c=11.22664(18) Šat 200 K) in which Mn is close to the +7 state. Excess-anion incorporation into Cs3CoCl5-type materials has not been previously reported, and this or other substitution mechanisms may enable many other high oxidation state transition metal nitrides to be prepared.

15.
Angew Chem Int Ed Engl ; 63(19): e202401364, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38465572

RESUMEN

The development of high-purity and high-energy-density green hydrogen through water electrolysis holds immense promise, but issues such as electrocatalyst costs and power consumption have hampered its practical application. In this study, we present a promising solution to these challenges through the use of a high-performance bifunctional electrocatalyst for energy-efficient hydrogen production via coupled hydrazine degradation. The biphasic metal nitrides with highly lattice-matched structures are deliberately constructed, forming an enhanced local electric field between the electron-rich Ni3N and electron-deficient Co3N. Additionally, Mn is introduced as an electric field engine to further activate electron redistribution. Our Mn@Ni3N-Co3N/NF bifunctional electrocatalyst achieves industrial-grade current densities of 500 mA cm-2 at 0.49 V without degradation, saving at least 53.3 % energy consumption compared to conventional alkaline water electrolysis. This work will stimulate the further development of metal nitride electrocatalysts and also provide new perspectives on low-cost hydrogen production and environmental protection.

16.
Angew Chem Int Ed Engl ; : e202404374, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38726699

RESUMEN

Strategies for discovery of high-performance electrocatalysts are important to advance clean energy technologies. Metastable phases such as low temperature or interfacial structures that are difficult to access in bulk may offer such catalytically active surfaces. We report here that the suboxide Zr3O, which is formed at Zr-ZrO2 interfaces but does not appear in the experimental Zr-O phase diagram exhibits outstanding oxygen reduction reaction (ORR) performance surpassing that of benchmark Pt/C and most transition metal-based catalysts. Addition of Fe3C nanoparticles to give a Zr-Zr3O-Fe3C/NC catalyst (NC=nitrogen-doped carbon) gives a half-wave potential (E1/2) of 0.914 V, outperforming Pt/C and showing only a 3 mV decrease after 20,000 electrochemical cycles. A zinc-air battery (ZAB) using this cathode material has a high power density of 241.1 mW cm-2 and remains stable for over 50 days of continuous cycling, demonstrating potential for practical applications. Zr3O demonstrates that interfacial or other phases that are difficult to stabilize may offer new directions for the discovery of high-performance electrocatalysts.

17.
Angew Chem Int Ed Engl ; 63(13): e202318503, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38311597

RESUMEN

ATP (adenosine triphosphate) is a vital energy source for living organisms, and its biosynthesis and precise concentration regulation often depend on macromolecular machinery composed of protein complexes or complicated multidomain proteins. We have identified a single-domain protein HK853CA derived from bacterial histidine kinases (HK) that can catalyze ATP synthesis efficiently. Here, we explored the reaction mechanism and multiple factors that influence this catalysis through a combination of experimental techniques and molecular simulations. Moreover, we optimized its enzymatic activity and applied it as an ATP replenishment machinery to other ATP-dependent systems. Our results broaden the understanding of ATP biosynthesis and show that the single CA domain can be applied as a new biomolecular catalyst used for ATP supply.


Asunto(s)
Bacterias , Proteínas Bacterianas , Histidina Quinasa/metabolismo , Proteínas Bacterianas/metabolismo , Bacterias/metabolismo , Adenosina Trifosfato/metabolismo , Catálisis
18.
Angew Chem Int Ed Engl ; 63(13): e202315034, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38352980

RESUMEN

The efficient conversion and storage of solar energy for chemical fuel production presents a challenge in sustainable energy technologies. Metal nitrides (MNs) possess unique structures that make them multi-functional catalysts for water splitting. However, the thermodynamic instability of MNs often results in the formation of surface oxide layers and ambiguous reaction mechanisms. Herein, we present on the photo-induced reconstruction of a Mo-rich@Co-rich bi-layer on ternary cobalt-molybdenum nitride (Co3 Mo3 N) surfaces, resulting in improved effectiveness for solar water splitting. During a photo-oxidation process, the uniform initial surface oxide layer is reconstructed into an amorphous Co-rich oxide surface layer and a subsurface Mo-N layer. The Co-rich outer layer provides active sites for photocatalytic oxygen evolution reaction (POER), while the Mo-rich sublayer promotes charge transfer and enhances the oxidation resistance of Co3 Mo3 N. Additionally, the surface reconstruction yields a shortened Co-Mo bond length, weakening the adsorption of hydrogen and resulting in improved performance for both photocatalytic hydrogen evolution reaction (PHER) and POER. This work provides insight into the surface structure-to-activity relationships of MNs in solar energy conversion, and is expected to have significant implications for the design of metal nitride-based catalysts in sustainable energy technologies.

19.
Angew Chem Int Ed Engl ; 63(14): e202319153, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38356309

RESUMEN

As a sustainable valorization route, electrochemical glycerol oxidation reaction (GOR) involves in formation of key OH* and selective adsorption/cleavage of C-C(O) intermediates with multi-step electron transfer, thus suffering from high potential and poor formate selectivity for most non-noble-metal-based electrocatalysts. So, it remains challenging to understand the structure-property relationship as well as construct synergistic sites to realize high-activity and high-selectivity GOR. Herein, we successfully achieve dual-high performance with low potentials and superior formate selectivity for GOR by forming synergistic Lewis and Brønsted acid sites in Ni-alloyed Co-based spinel. The optimized NiCo oxide solid-acid electrocatalyst exhibits low reaction potential (1.219 V@10 mA/cm2) and high formate selectivity (94.0 %) toward GOR. In situ electrochemical impedance spectroscopy and pH-dependence measurements show that the Lewis acid centers could accelerate OH* production, while the Brønsted acid centers are proved to facilitate high-selectivity formation of formate. Theoretical calculations reveal that NiCo alloyed oxide shows appropriate d-band center, thus balancing adsorption/desorption of C-O intermediates. This study provides new insights into rationally designing solid-acid electrocatalysts for biomass electro-upcycling.

20.
Apoptosis ; 28(7-8): 1060-1075, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37060507

RESUMEN

The aberrantly up-regulated CDK9 can be targeted for cancer therapy. The CDK inhibitor dinaciclib (Dina) has been found to drastically sensitizes cancer response to TRAIL-expressing extracellular vesicle (EV-T). However, the low selectivity of Dina has limited its application for cancer. We propose that CDK9-targeted siRNA (siCDK9) may be a good alternative to Dina. The siCDK9 molecules were encapsulated into EV-Ts to prepare a complexed nanodrug (siEV-T). It was shown to efficiently suppress CDK9 expression and overcome TRAIL resistance to induce strikingly augmented apoptosis in lung cancer both in vitro and in vivo, with a mechanism related to suppression of both anti-apoptotic factors and nuclear factor-kappa B pathway. Therefore, siEV-T potentially constitutes a novel, highly effective and safe therapy for cancers.


Asunto(s)
Neoplasias Pulmonares , FN-kappa B , Humanos , FN-kappa B/genética , FN-kappa B/metabolismo , Apoptosis , Línea Celular Tumoral , ARN Interferente Pequeño/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/genética , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética , Quinasa 9 Dependiente de la Ciclina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA