Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(9): e202318496, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38180310

RESUMEN

High-rate and stable Zn-ion batteries working at low temperatures are highly desirable for practical applications, but are challenged by sluggish kinetics and severe corrosion. Herein, inspired by frost-resistant plants, we report trace hydroxyl-rich electrolyte additives that implement a dual remodeling effect for high-performance low-temperature Zn-ion batteries. The additive with high Zn absorbability not only remodels Zn2+ primary solvent shell by alternating H2 O molecules, but also forms a shielding layer thus remodeling the Zn surface, which effectively enhances fast Zn2+ de-solvation reaction kinetics and prohibits Zn anode corrosion. Taking trace α-D-glucose (αDG) as a demonstration, the electrolyte obtains a low freezing point of -55.3 °C, and the Zn//Zn cell can stably cycle for 2000 h at 5 mA cm-2 under -25 °C, with a high cumulative capacity of 5000 mAh cm-2 . A full battery that stably operates for 10000 cycles at -50 °C is also demonstrated.

2.
Adv Mater ; 36(2): e2305812, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37714162

RESUMEN

Electronic textiles harmoniously interact with the human body and the surrounding environment, offering tremendous interest in smart wearable electronics. However, their wide application faces challenges due to the lack of stable and stretchable power electrodes/devices with multifunctional design. Herein, an intrinsically stretchable liquid metal-based fibrous anode for a stable Zn-ion battery (ZIB) is reported. Benefiting from the liquid feature and superior deformability of the liquid metal, optimized Zn ion concentration distribution and Zn (002) deposition behavior are observed, which result in dendrite-free performance even under stretching. With a strain of 50%, the ZIB maintains a high capacity of 139.8 mAh cm-3 (corresponding to 83.0% of the initial value) after 300 cycles, outperforming bare Zn fiber-based ZIB. The fibrous ZIB seamlessly integrates with the sensor, Joule heater, and wirelessly charging device, which provides a stable power supply for human signal monitoring and personal thermal management, holding promise for the application of wearable multifunctional electronic textiles.

3.
Adv Mater ; 36(26): e2312934, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38349956

RESUMEN

Stable Zn anodes with high utilization rate are urgently required to promote the specific and volumetric energy densities of Zn-ion batteries for practical applications. Herein, contrary to the widely utilized surface coating on Zn anodes, this work shows that a zinc foil with a backside coated layer delivers much enhanced cycling stability even under high depth of discharge. The backside coating significantly reduces stress concentration, accelerates heat diffusion, and facilitates electron transfer, thus effectively preventing dendrite growth and structural damage at high Zn utilization. As a result, the developed anode can be stably cycled for 334 h at 85.5% Zn utilization, which outperforms bare Zn and previously reported results on surface-coated Zn foils. An NVO-based full cell also shows stable performance with high Zn utilization rate (69.4%), low negative-positive electrodes ratio (1.44), and high specific/volumetric energy densities (155.8 Wh kg-1/178 Wh L-1), which accelerates the progress toward practical zinc-ion batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA