RESUMEN
The carcinogenic mechanism of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a well-known tobacco carcinogen, has not been fully elucidated in epigenetic studies. 5-Methylcytosine (5mC) modification plays a major role in epigenetic regulation. In this study, the 5mC level increased in both BEAS-2B human bronchial epithelium cells treated with 100 mg/L NNK for 24 h and NNK-induced malignant-transformed BEAS-2B cells (2B-NNK cells), suggesting that 5mC modification is associated with the malignant transformation mechanism of NNK. Using a combination of Methylated DNA Immunoprecipitation Sequencing (MeDIP-seq), RNA sequencing (RNA-seq), and bioinformatics analysis of data from the Genomic Data Commons database, we found that the Adipogenesis regulatory factor (ADIRF) promoter region was abnormally hypermethylated, yielding low ADIRF mRNA expression, and that ADIRF overexpression could inhibit the proliferation, migration, and invasion of 2B-NNK cells. This finding suggests that ADIRF plays a tumor suppressor role in the NNK-induced malignant transformation of cells. Subsequently, using 5-Aza-2'-deoxycytidine (5-Aza-2'-dC) and the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Catalytically Dead Cas9 (dCas9 system), we verified that the demethylation of the ADIRF promoter region in 2B-NNK cells inhibited the proliferation, migration, and invasion ability of the cells and increased their apoptosis ability. These results suggest that abnormal 5mC modification of the ADIRF promoter plays a positive regulatory role in the pathogenesis of NNK-induced lung cancer. This study offers a new experimental basis for the epigenetic mechanism of NNK-induced lung cancer.
Asunto(s)
Neoplasias Pulmonares , Nitrosaminas , Humanos , Carcinógenos/toxicidad , Carcinógenos/metabolismo , Epigénesis Genética , Células Epiteliales , Pulmón , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Nitrosaminas/toxicidadRESUMEN
Polycyclic aromatic hydrocarbons (PAHs) in PM2.5 pose potentially serious threats to human health. In this study, the distribution characteristics of 16 priority controlled, fine PM (PM2.5)-bound PAHs in the ambient air of Guangzhou city were analysed from 2016 to 2019. Four high-molecular-weight PAHs with the highest annual average concentrations were benzo[ghi]perylene (BghiP; 0.757 ng/m3), indeno(1,2,3-cd)pyrene (IcdP; 0.627 ng/m3), benzo[b]fluoranthene (BbF, 0.519 ng/m3) and 3,4-benzopyrene (BaP; 0.426 ng/m3). Increasing concentrations of BghiP, IcdP, BbF and BaP were associated with increasing numbers of outpatient visits for respiratory diseases, indicating that exposure to these PAHs potentially causes acute respiratory injury in residents. Acute exposure of the human bronchial epithelial cell line BEAS-2B cells to BghiP, IcdP, BbF and BaP in vitro resulted in acute inflammation, DNA damage and apoptosis. Further bioinformatic analysis indicated that nuclear receptor subfamily 1 group D member 1 (NR1D1) may be a key target gene involved in mediating the toxic effects of BghiP. Collectively, our results suggest that BghiP and the other PAHs represented by it can damage the respiratory system and induce lung cancer. This study provides valuable evidence regarding the potential health risks posed by local ambient PAHs pollution.
RESUMEN
Antibiotics have been widely detected in the water environment and thus pose a potential threat to human health. Although antibiotics have health-promoting properties, whether and how they affect health at environmental concentrations remains uncharacterised. We detected antibiotics in surface water and groundwater in China. Sulfonamides (851 ng/L) and tetracyclines (1322 ng/L) showed the highest concentrations in surface water, while the highest concentration of sulfonamides detected in groundwater was 250 ng/L. We analysed the distribution of four classes of antibiotics (sulfonamides, tetracyclines, macrolides, and quinolones) and evaluated the associated health risks in the surface water of seven cities. We found that antibiotic pollution caused health risks to the 0-3-months age group, but not to other age groups. We further demonstrated that simulated long-term exposure to environmental concentrations of antibiotics had concentration-dependent toxic effects on L-02 hepatocytes, affected cell proliferation, and induced oxidative damage and DNA damage. Chronic exposure to mixed sulfonamides affected growth, caused liver damage, and reduced the abundance of intestinal flora in mice. Under exposure to antibiotics, the abundance of Helicobacter pylori in the gut flora significantly increased and posed a health risk to humans. These results indicated that exposure to antibiotics at environmental concentrations can cause oxidative damage and inflammation both in vitro and in vivo. These findings add to the body of basic data on the distribution of antibiotics in the water environment, and provide a scientific basis for the evaluation of antibiotic toxicity.
Asunto(s)
Antibacterianos , Contaminantes Químicos del Agua , Humanos , Animales , Ratones , Antibacterianos/toxicidad , Antibacterianos/análisis , Agua/análisis , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , China , Sulfanilamida , Medición de Riesgo , Tetraciclinas/análisis , Monitoreo del AmbienteRESUMEN
Nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a Group 1 human carcinogen, as classified by the International Agency for Research of Cancer (IARC), and plays a significant role in lung carcinogenesis. However, its carcinogenic mechanism has not yet been fully elucidated. In this study, we performed colony formation assays, soft-agar assays, and tumor growth in nude mice to show that 100 mg/L NNK facilitates the malignant transformation of human bronchial epithelial Beas-2B cells. Transcriptome sequencing showed that insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1), a post-transcriptional regulator, was differentially expressed in NNK-induced malignant transformed Beas-2B cells (2B-NNK cells). Small interfering RNA (SiRNA) was used to downregulate the expression of the IGF2BP1 gene. The reduction in protein expression, cell proliferation rate, and colony-forming ability and the increase in the apoptosis rate of Beas-2B cells transfected with the SiRNA indicated a role for IGF2BP1 in NNK-induced malignant transformation. IGF2BP1 is an N6-methyladenosine (m6A) regulatory factor, but it is not known whether its association with m6A mediates the malignant transformation of cells. Therefore, we measured the overall levels of m6A in Beas-2B cells. We found that the overall m6A level was lower in 2B-NNK cells, and knocking down IGF2BP1, the overall level of m6A was restored. Hence, we concluded that IGF2BP1 is involved in the NNK-induced malignant transformation of Beas-2B cells, possibly via m6A modification. This study therefore contributes novel insights into the environmental pathogenesis of lung cancer and the gene regulatory mechanisms of chemical carcinogenesis.
Asunto(s)
Bronquios/efectos de los fármacos , Butanonas/farmacología , Transformación Celular Neoplásica/genética , Células Epiteliales/efectos de los fármacos , Metiltransferasas/metabolismo , Nicotiana/efectos adversos , Nitrosaminas/farmacología , Proteínas de Unión al ARN/genética , Adulto , Anciano , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Carcinógenos/farmacología , Línea Celular , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Transformación Celular Neoplásica/inducido químicamente , Regulación hacia Abajo/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Humanos , Pulmón/efectos de los fármacos , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/genética , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , Transfección/métodosRESUMEN
OBJECTIVE: To assess the influence of rs2910164 G/C single nucleotide polymorphism (SNP) of the miR-146a gene on its expression and susceptibility to gastric cancer. METHODS: Fifty three gastric cancer patients and six gastric cancer cell lines were selected for determining the miR-146a expression by Taqman quantitative PCR. A model was constructed to assess the influence of miR-146a overexpression on the growth of AGS gastric cancer cells. A case-control study involving 417 gastric cancer patients and 420 cancer-free individuals was then conducted, and the allelic and genotypic frequencies of the rs2910164 G/C SNP were compared. The genotypes of all subjects were determined by using a Taqman allelic discrimination assay. A Taqman assay was also used to quantify mature and pri-miR-146a transcripts among 65 gastric cancer patients with known genotypes. RESULTS: The expression of miR-146a was down-regulated among the 53 gastric cancer patients and six gastric cancer cell lines. Over-expression of miR-146a has suppressed the growth of gastric cancer by inhibiting the G1/S-phase transition of AGS cells. The case-control study showed that subjects with GC/CC genotypes had significantly lower risk for gastric cancer compared with those with GG genotype. In addition, miR-146a G/C SNP has significantly increased the level of mature miR-146a in those with GC/CC genotype compared with GG genotype. CONCLUSION: Down-regulation of miR-146a may play an important role in the pathogenesis of gastric cancer. The rs2910164 polymorphism of the miR-146a gene may reduce the risk of gastric cancer by influencing the processing of mature miR-146a.
Asunto(s)
MicroARNs/genética , Neoplasias Gástricas , Estudios de Casos y Controles , Genotipo , Humanos , Polimorfismo de Nucleótido Simple , Neoplasias Gástricas/genéticaRESUMEN
Circular RNAs are widely expressed in eukaryotic cells and associated with cancer. However, limited studies to date have focused on the potential role of circRNAs in progression of lung cancer. Data from the current investigation showed that circRNA 100146 is highly expressed in non-small cell lung cancer (NSCLC) cell lines and the chemically induced malignant transformed bronchial cell line, 16HBE-T, as well as 40 paired tissue samples of NSCLC. Suppression of circRNA 100146 inhibited the proliferation and invasion of cells and promoted apoptosis. Furthermore, circRNA 100146 could interact with splicing factors and bind miR-361-3p and miR-615-5p to regulate multiple downstream mRNAs. Our collective findings support a role of circRNA 100146 in the development of NSCLC and further demonstrate endogenous competition among circRNA 100146, SF3B3 and miRNAs, providing novel insights into the mechanisms underlying non-small cell lung cancer.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/genética , MicroARNs/genética , Oncogenes , ARN/genética , Animales , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular , Línea Celular Tumoral , Proliferación Celular/genética , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones , Ratones Desnudos , MicroARNs/metabolismo , ARN/metabolismo , ARN Circular , ARN Mensajero/genéticaRESUMEN
Lung cancer is the most common form of cancer throughout the world. The specific targeting of long noncoding RNAs (lncRNAs) by resveratrol opened a new avenue for cancer chemoprevention. In this study, we found that 21 lncRNAs were upregulated and 19 lncRNAs were downregulated in lung cancer A549 cells with 25 µmol/L resveratrol treatment determined by microarray analysis. AK001796, the lncRNA with the most clearly altered expression, was overexpressed in lung cancer tissues and cell lines, but its expression was downregulated in resveratrol-treated lung cancer cells. By monitoring cell proliferation and growth in vitro and tumor growth in vivo, we observed a significant reduction in cell viability in lung cancer cells and a slow growth in the tumorigenesis following AK001796 knockdown. We also found that AK001796 knockdown caused a cell-cycle arrest, with significant increases in the percentage of cells in G0/G1 in lung cancer cells. By using cell cycle pathway-specific PCR arrays, we detected changes in a number of cell cycle-related genes related to lncRNA AK001796 knockdown. We further investigated whether AK001796 participated in the anticancer effect of resveratrol and the results showed that reduced lncRNA AK001796 level potentially impaired the inhibitory effect of resveratrol on cell proliferation. To our knowledge, this is the first study to report the changes in an lncRNA expression profile induced by resveratrol in lung cancer.
Asunto(s)
División Celular/efectos de los fármacos , División Celular/genética , Inhibidores de Crecimiento/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Oncogenes/genética , ARN Largo no Codificante/genética , Estilbenos/farmacología , Animales , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Regulación hacia Abajo/efectos de los fármacos , Vectores Genéticos/genética , Humanos , Ratones Desnudos , Análisis por Micromatrices , Interferencia de ARN/efectos de los fármacos , Resveratrol , Transfección , Ensayo de Tumor de Célula MadreRESUMEN
With the development of technology and industry, the problem of global air pollution has become difficult to ignore. We investigated the association between air pollutant concentrations and daily all-cause mortality and stratified the analysis by sex, age, and season. Data for six air pollutants [fine particulate matter (PM2.5), inhalable particles (PM10), nitric dioxide (NO2), sulfur dioxide (SO2), ozone (O3), and carbon monoxide (CO)] and daily mortality rates were collected from 2015 to 2019 in Guangzhou, China. A time-series study using a quasi-Poisson generalized additive model was used to examine the relationships between environmental pollutant concentrations and mortality. Mortality data for 296,939 individuals were included in the analysis. The results showed that an increase of 10 µg/m3 in the concentrations of PM2.5, PM10, SO2, O3, NO2, and CO corresponded to 0.84% [95% confidence interval (CI): 0.47, 1.21%], 0.70% (0.44, 0.96%), 3.59% (1.77, 5.43%), 0.21% (0.05, 0.36%), 1.06% (0.70, 1.41%), and 0.05% (0.02, 0.09%), respectively. The effects of the six air pollutants were more significant for male individuals than female individuals, the cool season than the warm season, and people 75 years or older than those younger than 75 years. PM2.5, PM10, SO2, and NO2 were all associated with neoplasms and circulatory and respiratory diseases. The two-pollutant models found that PM2.5, PM10, and NO2 may independently affect the risk of mortality. The results showed that exposure to PM2.5, PM10 and NO2 may increase the risk of daily all-cause excessive mortality in Guangzhou.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Ambientales , Masculino , Humanos , Femenino , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Contaminantes Ambientales/análisis , Dióxido de Nitrógeno/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Material Particulado/análisis , China/epidemiologíaRESUMEN
Micro-LiNiCoMnO2 (MNCM), a cathode material with highest market share, has increasing demand with the growth of lithium battery industry. However, whether MNCM exposure brings adverse effects to workers remains unclear. This study aimed to explore the association between MNCM exposure with systemic inflammation and cardiac function. A cross-sectional study of 347 workers was undertaken from the MNCM production industry in Guangdong province, China in 2020. Metals in urine were measured using ICP-MS. The associations between metals, systemic inflammation, and cardiac function were appraised using a linear or logistic regression model. Bayesian kernel machine regression (BKMR) and generalized weighted quantile sum (gWQS) models were used to explore mixed metal exposures. The analysis of interaction and mediation was adopted to assess the role of inflammation in the relation between urinary metals and cardiac function. We observed that the levels of lithium (Li) and cobalt (Co) were positively associated with systemic inflammation and heart rate. The amount of Co contributed the highest weight on the increased systemic immune-inflammation index (SII) (59.8%), the system inflammation response index (SIRI) (44.3%), and heart rate (65.0%). Based on the mediation analysis, we estimated that SII mediated 32.3% and 20.9% of the associations between Li and Co with heart rate, and SIRI mediated 44.6% and 22.2% of the associations between Li and Co with heart rate, respectively. This study demonstrated for the first time that MNCM exposure increased the risk of workers' systemic inflammation and elevated heart rate, which were contributed by the excessive Li and Co exposure. Additionally, it indicates that systemic inflammation was a major mediator of the associations of Li and Co with cardiac function in MNCM production workers.
Asunto(s)
Cobalto , Inflamación , Litio , Exposición Profesional , Exposición Profesional/estadística & datos numéricos , Humanos , Adulto , Masculino , China , Estudios Transversales , Persona de Mediana Edad , Electrodos , Suministros de Energía Eléctrica , Femenino , Cardiopatías/inducido químicamenteRESUMEN
The alteration of microRNA (miRNA) expression plays an important role in chemical carcinogenesis. Presently, few reports have been published that concern the significance of circulating miRNAs in lung carcinogenesis induced by environmental carcinogens. The purpose of this study was to identify serum miRNAs that could be associated with lung carcinogenesis induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Male F344 rats were systemically administered with NNK. The rat serum differential expression profiles of miRNAs were analyzed by small RNA solexa sequencing. Using quantitative real-time PCR, the differentially expressed serum miRNAs were identified in each individual rat. Serum miR-206 and miR-133b were selected for further identification in rat serum at different stages of lung carcinogenesis; we detected the levels of serum miR-206 and miR-133b in lung cancer tissues induced by NNK. NNK causes significant alteration of serum miRNA expression. Compared to the control group, serum miR-206 and miR-133b were significantly up-regulated in the early stage of NNK-induced lung carcinogenesis. miR-206 and miR-133b exhibited low-expression in lung cancer tissues. Our results demonstrate that lung carcinogen NNK exposure changes the expression of serum miRNAs. Serum miR-206 and miR-133b could be associated with lung carcinogenesis induced by NNK.
Asunto(s)
Biomarcadores de Tumor/sangre , Carcinógenos/toxicidad , Neoplasias Pulmonares/sangre , MicroARNs/sangre , Nitrosaminas/toxicidad , Animales , Biomarcadores de Tumor/genética , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/genética , Masculino , MicroARNs/genética , Ratas , Ratas Endogámicas F344 , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genéticaRESUMEN
This study examined the short-term relationship between ambient air pollutants and children's outpatient visits, and identified the effect of modifications by season. Daily recordings of air pollutants (CO, NO2, O3, SO2, PM10, and PM2.5) and children's outpatient visit data were collected in Guangzhou from 2015 to 2019. A generalized additive model adjusted for potential confounding was introduced to verify the association between ambient air pollution and outpatient visits for children. Subgroup analysis by season was performed to evaluate the potential effects. A total of 5,483,014 children's outpatient visits were recorded. The results showed that a 10 µg/m3 increase in CO, NO2, O3, SO2, PM10, and PM2.5 corresponded with a 0.19% (95% CI: 0.15-0.24%), 2.46% (2.00-2.92%), 0.27% (0.07-0.46%), 7.16% (4.80-9.57%), 1.16% (0.83-1.49%), and 1.35% (0.88-1.82%) increase in children's outpatient visits on the lag0 of exposure, respectively. The relationships were stronger for O3, PM10, and PM2.5 in the warm seasons, and for CO, NO2, and SO2 in the cool seasons. When adjusting for the co-pollutants, the effects of CO, NO2, and PM10 were robust. The results of this study indicate that six air pollutants might increase the risk of children's outpatient visits in Guangzhou, China, especially in the cool season.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Humanos , Niño , Dióxido de Nitrógeno , Pacientes Ambulatorios , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , China/epidemiología , Material Particulado/análisisRESUMEN
Chimeric RNAs have been used as biomarkers and therapeutic targets for multiple types of cancers. However, less attention has been paid to their mechanism of action in neoplasia. Here, we reported that high-expressed chimeric RNA RRM2-C2orf48 was found in malignantly transformed BEAS-2B cells induced by 4-(methyl nitrosamine)-1-(3-pyridinyl)-1-butanone (NNK) in 74 lung cancer patients and several lung cancer cell lines. The expression level of RRM2-C2orf48 was significantly correlated with lymph node metastasis, distant metastasis, tumor-lymph node-metastasis (TNM) stage, and smoking. Overexpressing RRM2-C2orf48 promoted cell growth and accelerated the process of NNK-induced lung cancer. RRM2-C2orf48 knockdown inhibited the growth of RRM2-C2orf48-overexpressing BEAS-2B cells. Finally, we identified miR-219a-2-3p as a potential target of RRM2-C2orf48 in lung cancer. In summary, chimeric RNA RRM2-C2orf48 accelerated the process of NNK-induced lung cancer, and miR-219a-2-3p may be involved in this process.
RESUMEN
Particulate matter (PM), one of the most serious air contaminants, could easily pass through the airway and deposit at the deep alveoli. Thus, it might trigger respiratory diseases like inflammation, asthma and lung cancer on human. Long non-coding RNAs (lncRNAs) are considered as important regulator in promotion and progression of diverse cancers. However, the molecular mechanism of lncRNAs mediating PM-induced lung carcinogenesis remains unclear. In this study, we established a 16HBE malignant transformed cell induced by PM (Cells were treated with 20 µg/ml PM, which named PM-T cells) and explored the roles and mechanisms of lncRNAs in the malignant transformation induced by PM. Compared with 16HBE cells, various biological functions were changed in PM-T cells, such as cell proliferation, migration, cell cycle and apoptosis. LncRNA SPRY4-IT1 was significant down-regulated expression and associated with these biological effects. Our results showed that lncRNA SPRY4-IT1 overexpression reversed these functional changes mentioned above. The further studies indicated that lncRNA SPRY4-IT1 involved in PM-induced cell transformation by modulating Chk1 expression via negative regulation of DUSP6-ERK1/2. In conclusion, our studies suggested that lncRNA SPRY4-IT1 played the role as a tumor suppressor gene and might mediate 16HBE cells malignant transformation induced by PM through regulating DUSP6-ERK1/2-Chk1 signaling pathway.
Asunto(s)
ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Línea Celular Tumoral , Sistema de Señalización de MAP Quinasas , Regulación Neoplásica de la Expresión Génica , Transducción de Señal , Proliferación Celular/genética , Movimiento Celular , Fosfatasa 6 de Especificidad Dual/genética , Fosfatasa 6 de Especificidad Dual/metabolismoRESUMEN
Background: The adverse effects of 2.5-µm particulate matter (PM2.5) exposure on public health have become an increasing concern worldwide. However, epidemiological findings on the effects of PM2.5-bound metals on children's respiratory health are limited and inconsistent because PM2.5 is a complicated mixture. Objectives: Given the vulnerability of children's respiratory system, aim to pediatric respiratory health, this study evaluated the potential sources, health risks, and acute health effects of ambient PM2.5-bound metals among children in Guangzhou, China from January 2017 to December 2019. Methods: Potential sources of PM2.5-bound metals were detected using positive matrix factorization (PMF). A health risk assessment was conducted to investigate the inhalation risk of PM2.5-bound metals in children. The associations between PM2.5-bound metals and pediatric respiratory outpatient visits were examined with a quasi-Poisson generalized additive model (GAM). Results: During 2017-2019, the daily mean concentrations of PM2.5 was 53.39 µg/m3, and the daily mean concentrations of PM2.5-bound metals range 0.03 ng/m3 [thorium (Th) and beryllium (Be)] from to 396.40 ng/m3 [iron (Fe)]. PM2.5-bound metals were mainly contributed by motor vehicles and street dust. PM2.5-bound arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr)(VI), nickel (Ni), and lead (Pb) were found to pose a carcinogenic risk (CR). A quasi-Poisson GAM was constructed that showed there were significant associations between PM2.5 concentrations and pediatric outpatient visits for respiratory diseases. PM2.5 was significantly associated with pediatric outpatient visits for respiratory diseases. Moreover, with a 10 µg/m3 increase in Ni, Cr(VI), Ni, and As concentrations, the corresponding pediatric outpatient visits for respiratory diseases increased by 2.89% (95% CI: 2.28-3.50%), acute upper respiratory infections (AURIs) increased by 2.74% (2.13-3.35%), influenza and pneumonia (FLU&PN) increased by 23.36% (20.09-26.72%), and acute lower respiratory infections (ALRIs) increased by 16.86% (15.16-18.60%), respectively. Conclusions: Our findings showed that PM2.5 and PM2.5-bound As, Cd, Co, Cr(VI), Ni, and Pb had adverse effects on pediatric respiratory health during the study period. New strategies are required to decrease the production of PM2.5 and PM2.5-bound metals by motor vehicles and to reduce levels of street dust to reduce children's exposure to these pollutants and thereby increase child health.
Asunto(s)
Contaminantes Atmosféricos , Metales Pesados , Niño , Humanos , Metales Pesados/análisis , Cadmio , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Plomo , Monitoreo del Ambiente , Material Particulado/efectos adversos , Material Particulado/análisis , Polvo/análisisRESUMEN
Increasing evidence shows that circular RNA (circRNA) plays an important role in the progression of lung cancer. In this study, we found that has_circ_0000043 was highly expressed in 16HBE-T human bronchial epithelial cells that were malignantly transformed by benzo[a]pyrene-trans-7,8-diol-9,10-epoxide via circRNA microarray. We verified that hsa_circ_0000043 was also significantly overexpressed in lung cancer cell lines and tissues. Moreover, hsa_circ_0000043 overexpression was positively correlated with poor clinicopathological parameters, such as tumor-node metastasis stage, distant metastasis, lymph-node metastasis, and overall survival. In vitro assays revealed that hsa_circ_0000043 inhibition suppressed 16HBE-T cell proliferation, migration, and invasion. Furthermore, hsa_circ_0000043 inhibition suppressed tumor growth in a mouse xenograft model. We discovered that hsa_circ_0000043 binds with miR-4492, acting as a miR-4492 sponge. Decreased miR-4492 expression was also associated with poor clinicopathological parameters. Thus, hsa_circ_0000043 was shown to contribute to the proliferation, malignant transformation ability, migration, and invasion of 16HBE-T cells via miR-4492 sponging and BDNF and STAT3 involvement.
Asunto(s)
Neoplasias Pulmonares , MicroARNs , Humanos , Animales , Ratones , ARN Circular/genética , ARN Circular/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Invasividad Neoplásica/genética , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/genética , Proliferación Celular/genética , Pirenos , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Movimiento Celular , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismoRESUMEN
Aberrant expression of microRNA (miRNA) has been previously demonstrated to play an important role in a wide range of cancer types and further elucidation of its role in the mechanisms underlying tumorigenesis, anticarcinogenesis and potential chemotherapeutics is warranted. We chose the anti-benzo[a]pyrene-7,8-diol-9,10-epoxide-transformed human bronchial epithelial cell line 16HBE-T to study miRNAs involved in anticarcinogenesis. In resveratrol-treated cells, we found that miR-622 was upregulated, whereas it was downregulated in 16HBE-T cells, suggesting that miR-622 potentially acts as a tumor suppressor. Increasing the level of miR-622 by transient transfection-induced inhibition of proliferation and G(0) arrest in 16HBE-T cells and the lung cancer cell line H460 as demonstrated by cell viability and cell cycle analysis. MiR-622 dramatically suppressed the ability of 16HBE-T cells to form colonies in vitro and to develop tumors in nude mice. According to bioinformatics analysis, K-Ras messenger RNA was predicted as a putative miR-622 target; this was confirmed by western blot and luciferase reporter assays. Cell growth retardation was inhibited upon knockdown of K-Ras and an increase in the level of miR-622 in 16HBE-T cells. Furthermore, miR-622 inhibitor partially impaired the growth of 16HBE-T cells as demonstrated by luciferase reporter activity and K-Ras protein expression in 16HBE-T cells. In summary, miR-622 functions as a tumor suppressor by targeting K-Ras and impacting the anticancer effect of resveratrol. Therefore, miR-622 is potentially useful as a clinical therapy. MiR-622 impacts the K-Ras signal pathway and the potentially anticarcinogenic or chemotherapeutic properties warrant further investigation.
Asunto(s)
Anticarcinógenos/farmacología , Genes Supresores de Tumor/fisiología , MicroARNs/fisiología , Proteínas Proto-Oncogénicas/genética , Estilbenos/farmacología , Proteínas ras/genética , Animales , Bronquios/patología , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Humanos , Neoplasias Pulmonares/terapia , Ratones , Ratones Endogámicos BALB C , Proteínas Proto-Oncogénicas p21(ras) , ResveratrolRESUMEN
BACKGROUND: Based on extensive research on cytotoxicity of exogenous compounds in vitro, it is essential to develop a cell model that better mimics environment in vivo to explore cytotoxic mechanisms of exogenous compounds. METHODS: A co-culture system was established using a transwell system with Beas-2B and U937 cells. Cells were treated with fine particulate matter (PM2.5; 25, 50 and 100 µg/mL), nicotine-derived nitrosamine ketone (NNK; 50, 100 and 200 µg/mL) and benzo(a)pyrene diol epoxide (BPDE; 0.5, 2 and 8 µM) for 24 h. Cell proliferation, apoptosis and cell cycle, DNA damage were detected by CCK-8 and EdU, flow cytometry, and comet assay, respectively. Differentially expressed transcript and cytokine concentrations were determined by transcriptome sequencing and Cytokine Array, respectively. RESULTS: Compared with mono-culture, cell proliferation increased, apoptosis decreased, and DNA damage decreased in a dose-response relationship in co-culture. Gene expression profile was significantly different in co-culture, with significantly increased expression levels of 48 cytokines in co-culture. CONCLUSION: Cytotoxic damage to Beas-2B cells induced by exogenous carcinogens, including PM2.5, NNK and BPDE, was significantly reduced in a co-culture system compared with a mono-culture system. The mechanism may be related to changes in expression of cytokines, such as LIF, and activation of related pathways, such as TNF signaling pathway. Cytotoxic damage to Beas-2B induced by PM2.5, NNK and BPDE, was significantly reduced in co-culture. The mechanism may be related to changes in expression of cytokines and activation of related pathways. These findings provide new insights into cytotoxicity and experimental basis for safety evaluations of exogenous carcinogens.
Asunto(s)
7,8-Dihidro-7,8-dihidroxibenzo(a)pireno 9,10-óxido , Nitrosaminas , Humanos , 7,8-Dihidro-7,8-dihidroxibenzo(a)pireno 9,10-óxido/metabolismo , 7,8-Dihidro-7,8-dihidroxibenzo(a)pireno 9,10-óxido/farmacología , Técnicas de Cocultivo , Benzo(a)pireno/toxicidad , Sincalida/metabolismo , Sincalida/farmacología , Nicotina/metabolismo , Material Particulado/toxicidad , Carcinógenos/toxicidad , Nitrosaminas/metabolismo , Células Epiteliales , Macrófagos , Citocinas/metabolismo , Compuestos Epoxi , Cetonas/metabolismo , Cetonas/farmacologíaRESUMEN
Gastric cancer is the fourth most common cancer and the second leading cause of cancer mortality worldwide but the underlying molecular mechanism is not entirely clear. The objective of this study was to explore the role of let-7a microRNA (miRNA) in gastric tumorigenesis and the possible correlation between RAB40C and let-7a miRNA in gastric cancer. We found that expression of let-7a is reduced in human gastric cancer tissues and cell lines and there was a significant correlation between the level of let-7a expression and the stage of differentiation. Overexpression of let-7a resulted in a decrease in cell proliferation and G(1) arrest, significantly suppressed anchorage-dependent growth in vitro and the tumorigenicity of gastric cancer cells in a nude mouse xenograft model. Furthermore, we demonstrated that RAB40C is regulated directly by let-7a and plays an essential role as a mediator of the biological effects of let-7a in gastric tumorigenesis. This study revealed that let-7a is significant in suppressing gastric cancer growth in vivo and in vitro and provided the first evidence that RAB40C is negatively regulated by let-7a at the posttranscriptional level via binding to the 3'-untranslated region of RAB40C messenger RNA in gastric cancer. The results of this study suggest that let-7a and RAB40C are potentially useful targets for gastric cancer diagnosis and therapy.
Asunto(s)
Transformación Celular Neoplásica/patología , MicroARNs/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Proteínas de Unión al GTP rab/genética , Animales , Apoptosis , Western Blotting , Diferenciación Celular , Proliferación Celular , Femenino , Fase G1 , Humanos , Técnicas para Inmunoenzimas , Luciferasas/metabolismo , Metástasis Linfática , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , MicroARNs/metabolismo , Persona de Mediana Edad , Invasividad Neoplásica , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Neoplasias Gástricas/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas de Unión al GTP rab/antagonistas & inhibidores , Proteínas de Unión al GTP rab/metabolismoRESUMEN
Benzo[a]pyrene(B[a]P) is a known human carcinogen. The ability of B[a]P to form stable DNA adducts has been repeatedly demonstrated. However, the relationship between DNA adduct formation and cell damage and its underlying molecular mechanisms are less well understood. In this study, we determined the cytotoxicity of benzo[a]pyrenediolepoxide, a metabolite of B[a]P, in human bronchial epithelial cells (BEAS-2B). The formation of BPDE-DNA adducts was quantified using a dot blot. DNA damage resulting from the formation of BPDE-DNA adducts was detected by chromatin immuneprecipitation sequencing (ChIP-Seq), with minor modifications, using specific antibodies against BPDE. In total, 1846 differentially expressed gene loci were detected between the treatment and control groups. The distribution of the BPDE-bound regions indicated that BPDE could covalently bind with both coding and non-coding regions to cause DNA damage. However, the majority of binding occurred at protein-coding genes. Furthermore, among the BPDE-bound genes, we found 16 protein-coding genes related to DNA damage repair. We explored the response to BPDE exposure at the transcriptional level using qRT-PCR and observed a strong inhibition of EIF4A3. We then established an EIF4A3 overexpression cell model and performed comet assays, which revealed that the levels of DNA damage in EIF4A3-overexpressing cells were lower than those in normal cells following BPDE exposure. This suggests that the BPDE-DNA adduct-induced reduction in EIF4A3 expression contributed to the DNA damage induced by BPDE exposure in BEAS-2B cells. These novel findings indicate that ChIP-Seq combined with BPDE specific antibody may be used for exploring the underlying mechanism of DNA adduct-induced genomic damage.
Asunto(s)
Benzo(a)pireno/toxicidad , ARN Helicasas DEAD-box/metabolismo , Aductos de ADN , Daño del ADN/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Factor 4A Eucariótico de Iniciación/metabolismo , Línea Celular , Clonación Molecular , ARN Helicasas DEAD-box/genética , Factor 4A Eucariótico de Iniciación/genética , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Mucosa Respiratoria/citologíaRESUMEN
BACKGROUND: Lung cancer is the leading cause of cancer-related mortality worldwide. Although cigarette smoking is an established risk factor for lung cancer, few reliable smoking-related biomarkers for non-small-cell lung cancer (NSCLC) are available. An improved understanding of these biomarkers would further the development of new biomarker-targeted therapies and lead to improvements in overall patient survival. METHODS: We performed bioinformatic analysis to screened potential target genes, then quantitative PCR, western, siRNA, CCK-8, flow cytometry, tumorigenicity assays in nude mice were performed to validated the function. RESULTS: In this study, we identified 83 smoking-related genes (SRGs) based on an integration analysis of two Gene Expression Omnibus (GEO) datasets, and 27 hub SRGs with potential carcinogenic effects by analyzing a dataset of smokers with NSCLC in The Cancer Genome Atlas (TCGA) database. A survival analysis revealed three genes with potential prognostic value, namely SRXN1, KRT6A and JAKMIP3. A univariate Cox analysis revealed significant associations of elevated SRXN1 and KRT6A expression with prognosis. A receiver operating characteristic (ROC) curve analysis indicated the high diagnostic value of SRXN1 and KRT6A for smoking and cancer. Quantitative PCR and western blotting validated the increased expression of SRXN1 and KRT6A mRNA and protein, respectively, in lung cancer cell lines and NSCLC tissues. In patients with NSCLC, SRXN1 and KRT6A expression was associated with the tumor-node-metastasis (TNM) stage, presence of metastasis, history of smoking and daily smoking consumption. Furthermore, inhibition of SRXN1 or KRT6A suppressed viability and enhanced apoptosis in the A549 human lung carcinoma cell line. Tumorigenicity assays in nude mice confirmed that the siRNA-mediated downregulation of SRXN1 and KRT6A expression inhibited tumor growth in vivo. CONCLUSIONS: In summary, SRXN1 and KRT6A act as oncogenes in NSCLC and might be potential biomarkers of smoking exposure and the early diagnosis and prognosis of NSCLC in smokers, which is vital for lung cancer therapy.