Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Mol Cell ; 61(6): 809-20, 2016 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-26990986

RESUMEN

Cereblon (CRBN), a substrate receptor for the cullin-RING ubiquitin ligase 4 (CRL4) complex, is a direct protein target for thalidomide teratogenicity and antitumor activity of immunomodulatory drugs (IMiDs). Here we report that glutamine synthetase (GS) is an endogenous substrate of CRL4(CRBN). Upon exposing cells to high glutamine concentration, GS is acetylated at lysines 11 and 14, yielding a degron that is necessary and sufficient for binding and ubiquitylation by CRL4(CRBN) and degradation by the proteasome. Binding of acetylated degron peptides to CRBN depends on an intact thalidomide-binding pocket but is not competitive with IMiDs. These findings reveal a feedback loop involving CRL4(CRBN) that adjusts GS protein levels in response to glutamine and uncover a new function for lysine acetylation.


Asunto(s)
Glutamato-Amoníaco Ligasa/metabolismo , Factores Inmunológicos/metabolismo , Péptido Hidrolasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Acetilación , Proteínas Adaptadoras Transductoras de Señales , Glutamina/metabolismo , Células HEK293 , Humanos , Lisina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Talidomida/metabolismo , Ubiquitinación
2.
Eur Heart J ; 43(20): 1973-1989, 2022 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-35190817

RESUMEN

AIMS: Cereblon (CRBN) is a substrate receptor of the E3 ubiquitin ligase complex that was reported to target ion channel proteins. L-type voltage-dependent Ca2+ channel (LTCC) density and dysfunction is a critical player in heart failure with reduced ejection fraction (HFrEF). However, the underlying cellular mechanisms by which CRBN regulates LTCC subtype Cav1.2α during cardiac dysfunction remain unclear. Here, we explored the role of CRBN in HFrEF by investigating the direct regulatory role of CRBN in Cav1.2α activity and examining how it can serve as a target to address myocardial dysfunction. METHODS AND RESULTS: Cardiac tissues from HFrEF patients exhibited increased levels of CRBN compared with controls. In vivo and ex vivo studies demonstrated that whole-body CRBN knockout (CRBN-/-) and cardiac-specific knockout mice (Crbnfl/fl/Myh6Cre+) exhibited enhanced cardiac contractility with increased LTCC current (ICaL) compared with their respective controls, which was modulated by the direct interaction of CRBN with Cav1.2α. Mechanistically, the Lon domain of CRBN directly interacted with the N-terminal of Cav1.2α. Increasing CRBN levels enhanced the ubiquitination and proteasomal degradation of Cav1.2α and decreased ICaL. In contrast, genetic or pharmacological depletion of CRBN via TD-165, a novel PROTAC-based CRBN degrader, increased surface expression of Cav1.2α and enhanced ICaL. Low CRBN levels protected the heart against cardiomyopathy in vivo. CONCLUSION: Cereblon selectively degrades Cav1.2α, which in turn facilitates cardiac dysfunction. A targeted approach or an efficient method of reducing CRBN levels could serve as a promising strategy for HFrEF therapeutics.


Asunto(s)
Insuficiencia Cardíaca , Ubiquitina-Proteína Ligasas , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Humanos , Ratones , Volumen Sistólico , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
3.
J Neurosci ; 41(24): 5138-5156, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-33972400

RESUMEN

Protein aggregation can induce explicit neurotoxic events that trigger a number of presently untreatable neurodegenerative disorders. Chaperones, on the other hand, play a neuroprotective role because of their ability to unfold and refold abnormal proteins. The progressive nature of neurotoxic events makes it important to discover endogenous factors that affect pathologic and molecular phenotypes of neurodegeneration in animal models. Here, we identified microtubule-associated protein tau, and chaperones Hsp70 (heat shock protein 70) and DNAJA1 (DJ2) as endogenous substrates of cereblon (CRBN), a substrate-recruiting subunit of cullin4-RING-E3-ligase. This recruitment results in ubiquitin-mediated degradation of tau, Hsp70, and DJ2. Knocking out CRBN enhances the chaperone activity of DJ2, resulting in decreased phosphorylation and aggregation of tau, improved association of tau with microtubules, and reduced accumulation of pathologic tau across brain. Functionally abundant DJ2 could prevent tau aggregation induced by various factors like okadaic acid and heparin. Depletion of CRBN also decreases the activity of tau-kinases including GSK3α/ß, ERK, and p38. Intriguingly, we found a high expression of CRBN and low levels of DJ2 in neuronal tissues of 5XFAD and APP knock-in male mouse models of Alzheimer's disease. This implies that CRBN-mediated DJ2/Hsp70 pathway may be compromised in neurodegeneration. Being one of the primary pathogenic events, elevated CRBN can be a contributing factor for tauopathies. Our data provide a functional link between CRBN and DJ2/Hsp70 chaperone machinery in abolishing the cytotoxicity of aggregation-prone tau and suggest that Crbn-/- mice serve as an animal model of resistance against tauopathies for further exploration of the molecular mechanisms of neurodegeneration.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo , Tauopatías/patología , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas tau/metabolismo , Animales , Línea Celular , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Degeneración Nerviosa , Tauopatías/metabolismo
4.
J Biol Chem ; 289(34): 23343-52, 2014 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-24993823

RESUMEN

Initially identified as a protein implicated in human mental deficit, cereblon (CRBN) was recently recognized as a negative regulator of adenosine monophosphate-activated protein kinase (AMPK) in vivo and in vitro. Here, we present results showing that CRBN can effectively regulate new protein synthesis through the mammalian target of rapamycin (mTOR) signaling pathway, a downstream target of AMPK. Whereas deficiency of Crbn repressed protein translation via activation of the AMPK-mTOR cascade in Crbn-knock-out mice, ectopic expression of the wild-type CRBN increased protein synthesis by inhibiting endogenous AMPK. Unlike the wild-type CRBN, a mutant CRBN found in human patients, which lacks the last 24 amino acids, failed to rescue mTOR-dependent repression of protein synthesis in Crbn-deficient mouse fibroblasts. These results provide the first evidence that Crbn can activate the protein synthesis machinery through the mTOR signaling pathway by inhibiting AMPK. In light of the fact that protein synthesis regulated by mTOR is essential for various forms of synaptic plasticity that underlie the cognitive functions of the brain, the results of this study suggest a plausible mechanism for CRBN involvement in higher brain function in humans, and they may help explain how a specific mutation in CRBN can affect the cognitive ability of patients.


Asunto(s)
Adenilato Quinasa/metabolismo , Mutación , Proteínas del Tejido Nervioso/genética , Biosíntesis de Proteínas , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Encéfalo/enzimología , Encéfalo/metabolismo , Discapacidades para el Aprendizaje/genética , Masculino , Trastornos de la Memoria/genética , Ratones , Ratones Noqueados , Fosforilación
5.
Biochem Biophys Res Commun ; 458(1): 34-9, 2015 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-25619137

RESUMEN

Previous studies showed that cereblon (CRBN) binds to various cellular target proteins, implying that CRBN regulates a wide range of cell responses. In this study, we found that deletion of the Crbn gene desensitized mouse embryonic fibroblast cells to various cell death-promoting stimuli, including endoplasmic reticulum stress inducers. Mechanistically, deletion of Crbn activates pathways involved in the unfolded protein response prior to ER stress induction. Loss of Crbn activated PKR-like ER kinase (PERK) with enhanced phosphorylation of eIF2α. Following ER stress induction, loss of Crbn delayed dephosphorylation of eIF2α, while reconstitution of Crbn reversed enhanced phosphorylation of PERK and eIF2α. Lastly, we found that activation of the PERK/eIF2α pathway following Crbn deletion is caused by activation of AMP-activated protein kinase (AMPK). We propose that CRBN plays a role in cellular stress signaling, including the unfolded protein response, by controlling the activity of AMPK.


Asunto(s)
Estrés del Retículo Endoplásmico/fisiología , Proteínas del Tejido Nervioso/genética , Respuesta de Proteína Desplegada/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Isquemia Encefálica/genética , Isquemia Encefálica/patología , Muerte Celular/genética , Células Cultivadas , Estrés del Retículo Endoplásmico/genética , Activación Enzimática , Fibroblastos/citología , Fibroblastos/fisiología , Masculino , Proteínas de la Membrana/metabolismo , Ratones Noqueados , Proteínas del Tejido Nervioso/metabolismo , Oxígeno/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , eIF-2 Quinasa/metabolismo
6.
Pharmaceuticals (Basel) ; 14(6)2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34073624

RESUMEN

Cereblon (CRBN), a primary target of immune-modulatory imide drugs (IMiDs), functions as a substrate receptor in the CUL4-RBX1-DDB1-CRBN (known as CRL4CRBN) E3 ubiquitin ligase complex. Binding of IMiDs to CRBN redirects the CRL4CRBN E3 ubiquitin ligase to recruit or displace its substrates. Interaction between CRBN and the AMPK α subunit leads to CRL4CRBN-dependent degradation of the γ subunit and inhibits AMPK activity. However, the effect of thalidomide on the function of CRBN as a negative regulator of AMPK through interaction with the α subunit remains unclear. Here, we show that thalidomide does not affect AMPK activation or the binding affinity between CRBN and the AMPK α subunit. Thalidomide had no effect on AMPK activity independent of CRBN expression. The N-terminal region and C-terminal tail of CRBN, which is distinct from the IMiD binding site, were critical for interaction with the AMPK α subunit. The present results suggest that CRL4CRBN negatively regulates AMPK through a pathway independent from the CRBN-IMiD binding region.

7.
Biochim Biophys Acta Mol Cell Res ; 1867(8): 118729, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32333926

RESUMEN

Cereblon (CRBN), a substrate receptor for Cullin-ring E3 ubiquitin ligase (CRL), is a major target protein of immunomodulatory drugs. An earlier study demonstrated that CRBN directly interacts with the catalytic α subunit of AMP-activated protein kinase (AMPK), a master regulator of energy homeostasis, down-regulating the enzymatic activity of AMPK. However, it is not clear how CRBN modulates AMPK activity. To investigate the mechanism of CRBN-dependent AMPK inhibition, we measured protein levels of each AMPK subunit in brains, livers, lungs, hearts, spleens, skeletal muscles, testes, kidneys, and embryonic fibroblasts from wild-type and Crbn-/- mice. Protein levels and stability of the regulatory AMPKγ subunit were increased in Crbn-/- mice. Increased stability of AMPKγ in Crbn-/- MEFs was dramatically reduced by exogenous expression of Crbn. In wild-type MEFs, the proteasomal inhibitor MG132 blocked degradation of AMPKγ. We also found that CRL4CRBN directly ubiquitinated AMPKγ. Taken together, these findings suggest that CRL4CRBN regulates AMPK through ubiquitin-dependent proteasomal degradation of AMPKγ.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Ubiquitina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Encéfalo/metabolismo , Regulación hacia Abajo , Fibroblastos/metabolismo , Células HEK293 , Corazón , Homeostasis , Humanos , Riñón/metabolismo , Hígado/metabolismo , Pulmón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/metabolismo , Bazo/metabolismo , Testículo/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ubiquitina-Proteína Ligasas , Ubiquitinación
8.
Nat Commun ; 11(1): 5489, 2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-33127885

RESUMEN

Calcium flux regulating intracellular calcium levels is essential and modulated for efficient efferocytosis. However, the molecular mechanism by which calcium flux is modulated during efferocytosis remains elusive. Here, we report that Orai1, a Crbn substrate, is upregulated via its attenuated interaction with Crbn during efferocytosis, which increases calcium influx into phagocytes and thereby promotes efferocytosis. We found that Crbn deficiency promoted phagocytosis of apoptotic cells, which resulted from facilitated phagocytic cup closure and was nullified by a CRAC channel inhibitor. In addition, Orai1 associated with Crbn, resulting in ubiquitination and proteasomal degradation of Orai1 and alteration of SOCE-mediated calcium influx. The association of Orai1 with Crbn was attenuated during efferocytosis, leading to reduced ubiquitination of Orai1 and consequently upregulation of Orai1 and calcium influx. Collectively, our study reveals a regulatory mechanism by which calcium influx is modulated by a Crbn-Orai1 axis to facilitate efferocytosis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Calcio/metabolismo , Proteína ORAI1/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Apoptosis , Canales de Calcio/metabolismo , Señalización del Calcio , Muerte Celular , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fagocitosis , Ubiquitina-Proteína Ligasas/genética
9.
Diabetes ; 62(6): 1855-64, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23349485

RESUMEN

A nonsense mutation in cereblon (CRBN) causes a mild type of mental retardation in humans. An earlier study showed that CRBN negatively regulates the functional activity of AMP-activated protein kinase (AMPK) in vitro by binding directly to the α1-subunit of the AMPK complex. However, the in vivo role of CRBN was not studied. For elucidation of the physiological functions of Crbn, a mouse strain was generated in which the Crbn gene was deleted throughout the whole body. In Crbn-deficient mice fed a normal diet, AMPK in the liver showed hyperphosphorylation, which indicated the constitutive activation of AMPK. Since Crbn-deficient mice showed significantly less weight gain when fed a high-fat diet and their insulin sensitivity was considerably improved, the functions of Crbn in the liver were primarily investigated. These results provide the first in vivo evidence that Crbn is a negative modulator of AMPK, which suggests that Crbn may be a potential target for metabolic disorders of the liver.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Dieta Alta en Grasa/efectos adversos , Hígado/enzimología , Péptido Hidrolasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Femenino , Resistencia a la Insulina/genética , Resistencia a la Insulina/fisiología , Masculino , Ratones , Ratones Noqueados , Obesidad/etiología , Obesidad/genética , Obesidad/terapia , Péptido Hidrolasas/genética , Ubiquitina-Proteína Ligasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA