Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 300(8): 107526, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38960041

RESUMEN

The human ether-a-go-go-related gene (hERG) encodes the Kv11.1 (or hERG) channel that conducts the rapidly activating delayed rectifier potassium current (IKr). Naturally occurring mutations in hERG impair the channel function and cause long QT syndrome type 2. Many missense hERG mutations lead to a lack of channel expression on the cell surface, representing a major mechanism for the loss-of-function of mutant channels. While it is generally thought that a trafficking defect underlies the lack of channel expression on the cell surface, in the present study, we demonstrate that the trafficking defective mutant hERG G601S can reach the plasma membrane but is unstable and quickly degrades, which is akin to WT hERG channels under low K+ conditions. We previously showed that serine (S) residue at 624 in the innermost position of the selectivity filter of hERG is involved in hERG membrane stability such that substitution of serine 624 with threonine (S624T) enhances hERG stability and renders hERG insensitive to low K+ culture. Here, we report that the intragenic addition of S624T substitution to trafficking defective hERG mutants G601S, N470D, and P596R led to a complete rescue of the function of these otherwise loss-of-function mutant channels to a level similar to the WT channel, representing the most effective rescue means for the function of mutant hERG channels. These findings not only provide novel insights into hERG mutation-mediated channel dysfunction but also point to the critical role of S624 in hERG stability on the plasma membrane.

2.
J Biol Chem ; 300(7): 107483, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38897569

RESUMEN

The voltage-gated Kv1.5 potassium channel, conducting the ultra-rapid delayed rectifier K+ current (IKur) in human cells, plays important roles in the repolarization of atrial action potentials and regulation of the vascular tone. We previously reported that activation of protein kinase C (PKC) by phorbol 12-myristate 13-acetate (PMA) induces endocytic degradation of cell-surface Kv1.5 channels, and a point mutation removing the phosphorylation site, T15A, in the N terminus of Kv1.5 abolished the PMA-effect. In the present study, using mutagenesis, patch clamp recording, Western blot analysis, and immunocytochemical staining, we demonstrate that ubiquitination is involved in the PMA-mediated degradation of mature Kv1.5 channels. Since the expression of the Kv1.4 channel is unaffected by PMA treatment, we swapped the N- and/or C-termini between Kv1.5 and Kv1.4. We found that the N-terminus alone did not but both N- and C-termini of Kv1.5 did confer PMA sensitivity to mature Kv1.4 channels, suggesting the involvement of Kv1.5 C-terminus in the channel ubiquitination. Removal of each of the potential ubiquitination residue Lysine at position 536, 565, and 591 by Arginine substitution (K536R, K565R, and K591R) had little effect, but removal of all three Lysine residues with Arginine substitution (3K-R) partially reduced PMA-mediated Kv1.5 degradation. Furthermore, removing the cysteine residue at position 604 by Serine substitution (C604S) drastically reduced PMA-induced channel degradation. Removal of the three Lysines and Cys604 with a quadruple mutation (3K-R/C604S) or a truncation mutation (Δ536) completely abolished the PKC activation-mediated degradation of Kv1.5 channels. These results provide mechanistic insight into PKC activation-mediated Kv1.5 degradation.


Asunto(s)
Canal de Potasio Kv1.5 , Proteína Quinasa C , Proteolisis , Acetato de Tetradecanoilforbol , Ubiquitinación , Canal de Potasio Kv1.5/metabolismo , Canal de Potasio Kv1.5/genética , Humanos , Proteína Quinasa C/metabolismo , Proteína Quinasa C/genética , Acetato de Tetradecanoilforbol/farmacología , Células HEK293 , Animales , Fosforilación , Membrana Celular/metabolismo , Canal de Potasio Kv1.4/metabolismo , Canal de Potasio Kv1.4/genética
3.
J Biol Chem ; 299(1): 102798, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36528059

RESUMEN

Chemotherapy resistance is the dominant challenge in the treatment of acute myeloid leukemia (AML). Nuclear factor E2-related factor 2 (Nrf2) exerts a vital function in drug resistance of many tumors. Nevertheless, the potential molecular mechanism of Nrf2 regulating the base excision repair pathway that mediates AML chemotherapy resistance remains unclear. Here, in clinical samples, we found that the high expression of Nrf2 and base excision repair pathway gene encoding 8-hydroxyguanine DNA glycosidase (OGG1) was associated with AML disease progression. In vitro, Nrf2 and OGG1 were highly expressed in drug-resistant leukemia cells. Upregulation of Nrf2 in leukemia cells by lentivirus transfection could decrease the sensitivity of leukemia cells to cytarabine, whereas downregulation of Nrf2 in drug-resistant cells could enhance leukemia cell chemosensitivity. Meanwhile, we found that Nrf2 could positively regulate OGG1 expression in leukemia cells. Our chromatin immunoprecipitation assay revealed that Nrf2 could bind to the promoter of OGG1. Furthermore, the use of OGG1 inhibitor TH5487 could partially reverse the inhibitory effect of upregulated Nrf2 on leukemia cell apoptosis. In vivo, downregulation of Nrf2 could increase the sensitivity of leukemia cell to cytarabine and decrease OGG1 expression. Mechanistically, Nrf2-OGG1 axis-mediated AML resistance might be achieved by activating the AKT signaling pathway to regulate downstream apoptotic proteins. Thus, this study reveals a novel mechanism of Nrf2-promoting drug resistance in leukemia, which may provide a potential therapeutic target for the treatment of drug-resistant/refractory leukemia.


Asunto(s)
Citarabina , ADN Glicosilasas , Resistencia a Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Apoptosis , Núcleo Celular/metabolismo , Citarabina/uso terapéutico , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , ADN Glicosilasas/metabolismo
4.
J Am Chem Soc ; 146(17): 11944-11954, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38622919

RESUMEN

Protein tyrosine nitration (PTN) by oxidative and nitrative stress is a well-known post-translational modification that plays a role in the initiation and progression of various diseases. Despite being recognized as a stable modification for decades, recent studies have suggested the existence of a reduction in PTN, leading to the formation of 3-aminotyrosine (3AT) and potential denitration processes. However, the vital functions of 3AT-containing proteins are still unclear due to the lack of selective probes that directly target the protein tyrosine amination. Here, we report a novel approach to label and enrich 3AT-containing proteins with synthetic salicylaldehyde (SAL)-based probes: SALc-FL with a fluorophore and SALc-Yn with an alkyne tag. These probes exhibit high selectivity and efficiency in labeling and can be used in cell lysates and live cells. More importantly, SALc-Yn offers versatility when integrated into multiple platforms by enabling proteome-wide quantitative profiling of cell nitration dynamics. Using SALc-Yn, 355 proteins were labeled, enriched, and identified to carry the 3AT modification in oxidatively stressed RAW264.7 cells. These findings provide compelling evidence supporting the involvement of 3AT as a critical intermediate in nitrated protein turnover. Moreover, our probes serve as powerful tools to investigate protein nitration and denitration processes, and the identification of 3AT-containing proteins contributes to our understanding of PTN dynamics and its implications in cellular redox biology.


Asunto(s)
Tirosina , Tirosina/análogos & derivados , Tirosina/química , Tirosina/metabolismo , Aminación , Humanos , Proteómica/métodos , Aldehídos/química , Aldehídos/síntesis química , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Proteínas/química , Proteínas/metabolismo , Proteínas/análisis , Ratones , Animales
5.
Ann Hematol ; 103(5): 1549-1559, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38526649

RESUMEN

The symptoms in patients with primary immune thrombocytopenia (ITP) after COVID-19 onset remain largely unclear. The aim of this study was to describe the platelet count fluctuations in ITP patients following the diagnosis of COVID-19. A prospective multicentre observational study was conducted from December 15th, 2022, to January 31st, 2023 in 39 general hospitals across China. Patients with preexisting primary ITP who were newly diagnosed with COVID-19 were enrolled. A total of 1216 ITP patients with newly-diagnosed COVID-19 were enrolled. 375 (30.8%) patients experienced ITP exacerbation within eight weeks after the diagnosis of COVID-19, and most exacerbation (266/375, 70.9%) developed in the first two weeks. Immunosuppressive therapy for ITP and severe/critical COVID-19 infection were independent variables associated with ITP exacerbation. Overall the platelet count had a transient increasing trend, and the platelet peak value occurred at two weeks after COVID-19 infection. Then, the platelet count decreased to the baseline level in the following weeks. The platelet count had a transient increasing trend in ITP patients following the diagnosis of COVID-19. ITP exacerbation only occurred in less than one-third of ITP patients. Nonimmunosuppressive therapy may have an advantage to prevent ITP exacerbation during COVID-19.


Asunto(s)
COVID-19 , Púrpura Trombocitopénica Idiopática , Humanos , Púrpura Trombocitopénica Idiopática/diagnóstico , Estudios Prospectivos , Recuento de Plaquetas , Plaquetas
6.
Mol Pharmacol ; 104(4): 164-173, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37419691

RESUMEN

The human ether-a-go-go-related gene (hERG) encodes for the pore-forming subunit of the channel that conducts the rapidly activating delayed K+ current (IKr) in the heart. The hERG channel is important for cardiac repolarization, and reduction of its expression in the plasma membrane due to mutations causes long QT syndrome type 2 (LQT2). As such, promoting hERG membrane expression is a strategy to rescue mutant channel function. In the present study, we applied patch clamp, western blots, immunocytochemistry, and quantitative reverse transcription polymerase chain reaction techniques to investigate the rescue effects of two drugs, remdesivir and lumacaftor, on trafficking-defective mutant hERG channels. As our group has recently reported that the antiviral drug remdesivir increases wild-type (WT) hERG current and surface expression, we studied the effects of remdesivir on trafficking-defective LQT2-causing hERG mutants G601S and R582C expressed in HEK293 cells. We also investigated the effects of lumacaftor, a drug used to treat cystic fibrosis, that promotes CFTR protein trafficking and has been shown to rescue membrane expression of some hERG mutations. Our results show that neither remdesivir nor lumacaftor rescued the current or cell-surface expression of homomeric mutants G601S and R582C. However, remdesivir decreased while lumacaftor increased the current and cell-surface expression of heteromeric channels formed by WT hERG and mutant G601S or R582C hERG. We concluded that drugs can differentially affect homomeric WT and heteromeric WT+G601S (or WT+R582C) hERG channels. These findings extend our understanding of drug-channel interaction and may have clinical implications for patients with hERG mutations. SIGNIFICANCE STATEMENT: Various naturally occurring mutations in a cardiac potassium channel called hERG can impair channel function by decreasing cell-surface channel expression, resulting in cardiac electrical disturbances and even sudden cardiac death. Promotion of cell-surface expression of mutant hERG channels represents a strategy to rescue channel function. This work demonstrates that drugs such as remdesivir and lumacaftor can differently affect homomeric and heteromeric mutant hERG channels, which have biological and clinical implications.


Asunto(s)
Canales de Potasio Éter-A-Go-Go , Síndrome de QT Prolongado , Humanos , Canales de Potasio Éter-A-Go-Go/metabolismo , Canal de Potasio ERG1/genética , Células HEK293 , Síndrome de QT Prolongado/tratamiento farmacológico , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/metabolismo
7.
Mol Cell Biochem ; 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37973706

RESUMEN

Natural Killer (NK) cell is the first batch of re-constructed cell populations after allogeneic hematopoietic stem cell transplantation (allo-HSCT), and its delayed reconstitution inevitably causes poor outcome. The traditional Chinese medicine Huiyang-Guben decoction (HYGB) has been clinically used in patients undergoing allo-HSCT, but its effect on NK cell reconstruction is still unclear. 40 patients with allo-HSCT therapy were randomly divided into the control group and the HYGB group, and were given oral administration of normal saline or HYGB for 4 weeks before allo-HSCT, respectively. NK cells were cultured and treated with transforming growth factor ß (TGF-ß) and HYGB in vitro, and cell viability, cell apoptosis, and the function of NK cells were evaluated. Functional verification experiments were performed by knocking down signal transduction molecule 7 (Smad7) in NK cells before TGF-ß and HYGB treatment. Clinical data suggested that HYGB intervention decreased the incidence of acute graft-versus-host disease after allo-HSCT, and increased the proportion of NK cell population. Meanwhile, HYGB improved cell viability, restrained apoptotic cell death, and enhanced cell killing activity of NK cells in patients with allo-HSCT. Notably, we found that HYGB significantly increased the expression level of Smad7 and the phosphorylation level of signal transducer and activator of transcription 3 (Stat3) in NK cells from patients with allo-HSCT. Moreover, HYGB alleviated TGF-ß-induced NK cell impairment and re-activated the Smad7/Stat3 signaling in vitro, while silencing Smad7 reversed the protective effect of HYGB on TGF-ß-treated NK cells. HYGB promotes NK cell reconstruction and improves NK cell function after allo-HSCT through activating the Smad7/Stat3 signaling pathway.

8.
J Biol Chem ; 296: 100514, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33676894

RESUMEN

The voltage-gated potassium channel Kv1.5 plays important roles in the repolarization of atrial action potentials and regulation of the vascular tone. While the modulation of Kv1.5 function has been well studied, less is known about how the protein levels of Kv1.5 on the cell membrane are regulated. Here, through electrophysiological and biochemical analyses of Kv1.5 channels heterologously expressed in HEK293 cells and neonatal rat ventricular myocytes, as well as native Kv1.5 in human induced pluripotent stem cell (iPSC)-derived atrial cardiomyocytes, we found that activation of protein kinase C (PKC) with phorbol 12-myristate 13-acetate (PMA, 10 nM) diminished Kv1.5 current (IKv1.5) and protein levels of Kv1.5 in the plasma membrane. Mechanistically, PKC activation led to monoubiquitination and degradation of the mature Kv1.5 proteins. Overexpression of Vps24, a protein that sorts transmembrane proteins into lysosomes via the multivesicular body (MVB) pathway, accelerated, whereas the lysosome inhibitor bafilomycin A1 completely prevented PKC-mediated Kv1.5 degradation. Kv1.5, but not Kv1.1, Kv1.2, Kv1.3, or Kv1.4, was uniquely sensitive to PMA treatment. Sequence alignments suggested that residues within the N terminus of Kv1.5 are essential for PKC-mediated Kv1.5 reduction. Using N-terminal truncation as well as site-directed mutagenesis, we identified that Thr15 is the target site for PKC that mediates endocytic degradation of Kv1.5 channels. These findings indicate that alteration of protein levels in the plasma membrane represents an important regulatory mechanism of Kv1.5 channel function under PKC activation conditions.


Asunto(s)
Endocitosis , Células Madre Pluripotentes Inducidas/metabolismo , Canal de Potasio Kv1.5/metabolismo , Proteína Quinasa C/metabolismo , Ubiquitinación , Animales , Animales Recién Nacidos , Humanos , Células Madre Pluripotentes Inducidas/citología , Canal de Potasio Kv1.5/genética , Fosforilación , Proteína Quinasa C/genética , Ratas , Transducción de Señal
9.
World J Surg Oncol ; 20(1): 400, 2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36527059

RESUMEN

BACKGROUND: Lung cancer is the leading cause of cancer death globally. Recent studies have revealed that CYP19A1 gene plays a crucial role in cancer initiation and development. The aim of this study was to assess the association of CYP19A1 genetic polymorphisms with the risk of lung cancer in the Chinese Han population. METHODS: This study randomly recruited 489 lung cancer patients and 467 healthy controls. The genotypes of four single nucleotide polymorphisms (SNPs) of the CYP19A1 gene were identified by the Agena MassARRY technique. Genetic model analysis was used to assess the association between genetic variations and lung cancer risk. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to evaluate the effect of four selected SNPs on lung cancer risk. RESULTS: CYP19A1 rs28757157 might contribute to an increased risk of lung cancer (p = 0.025, OR = 1.30, 95% CI 1.03-1.64). In stratified analysis, rs28757157 was associated with an increased cancer risk in the population aged under 60 years, females, smokers, and drinkers. Besides, rs3751592 and rs59429575 were also identified as risk biomarkers in the population under 60 years and drinkers. Meanwhile, a relationship between an enhanced risk of squamous cell carcinoma and rs28757157 was found, while the rs3751592 CC genotype was identified as a risk factor for lung adenocarcinoma development. CONCLUSIONS: This study has identified revealed that the three SNPs (rs28757157, rs3751592, and rs59429575) of CYP19A1 are associated with lung cancer in the Chinese Han population. These findings will provide theoretical support for further functional studies of CYP19A1 in lung cancer.


Asunto(s)
Predisposición Genética a la Enfermedad , Neoplasias Pulmonares , Femenino , Humanos , Anciano , Pueblos del Este de Asia , Estudios de Casos y Controles , Polimorfismo de Nucleótido Simple , Neoplasias Pulmonares/epidemiología , Neoplasias Pulmonares/genética , Genotipo , Factores de Riesgo , China/epidemiología , Aromatasa/genética
10.
J Pharmacol Exp Ther ; 377(2): 265-272, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33674391

RESUMEN

Drug-induced long QT syndrome (LQTS) is an established cardiac side effect of a wide range of medications and represents a significant concern for drug safety. The rapidly and slowly activating delayed rectifier K+ currents, mediated by channels encoded by the human ether-a-go-go-related gene (hERG) and KCNQ1 + KCNE1, respectively, are two main currents responsible for ventricular repolarization. The common cause for drugs to induce LQTS is through impairing the hERG channel. For the recent emergence of COVID-19, caused by severe acute respiratory syndrome coronavirus 2, several drugs have been investigated as potential therapies; however, there are concerns about their QT prolongation risk. Here, we studied the effects of chloroquine, hydroxychloroquine, azithromycin, and remdesivir on hERG channels. Our results showed that although chloroquine acutely blocked hERG current (IhERG), with an IC50 of 3.0 µM, hydroxychloroquine acutely blocked IhERG 8-fold less potently, with an IC50 of 23.4 µM. Azithromycin and remdesivir did not acutely affect IhERG When these drugs were added at 10 µM to the cell culture medium for 24 hours, remdesivir increased IhERG by 2-fold, which was associated with an increased mature hERG channel expression. In addition, these four drugs did not acutely or chronically affect KCNQ1 + KCNE1 channels. Our data provide insight into COVID-19 drug-associated LQTS and cardiac safety concerns. SIGNIFICANCE STATEMENT: This work demonstrates that, among off-label potential COVID-19 treatment drugs chloroquine, hydroxychloroquine, azithromycin, and remdesivir, the former two drugs block hERG potassium channels, whereas the latter two drugs do not. All four drugs do not affect KCNQ1 + KCNE1. As hERG and KCNQ1 + KCNE1 are two main K+ channels responsible for ventricular repolarization, and most drugs that induce long QT syndrome (LQTS) do so by impairing hERG channels, these data provide insight into COVID-19 drug-associated LQTS and cardiac safety concerns.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Azitromicina/farmacología , Tratamiento Farmacológico de COVID-19 , Cloroquina/farmacología , Canal de Potasio ERG1/antagonistas & inhibidores , Hidroxicloroquina/farmacología , Adenosina Monofosfato/farmacología , Adenosina Monofosfato/uso terapéutico , Alanina/farmacología , Alanina/uso terapéutico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Antivirales/farmacología , Antivirales/uso terapéutico , Azitromicina/uso terapéutico , COVID-19/metabolismo , Cloroquina/uso terapéutico , Relación Dosis-Respuesta a Droga , Canal de Potasio ERG1/metabolismo , Células HEK293 , Humanos , Hidroxicloroquina/uso terapéutico , Bloqueadores de los Canales de Potasio/farmacología , Bloqueadores de los Canales de Potasio/uso terapéutico
11.
Haematologica ; 106(1): 163-172, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31780634

RESUMEN

T-cell lymphoblastic lymphoma (T-LBL) is a highly aggressive form of lymphoma with poor clinical outcomes and lacks of a standard treatment regimen. In this study, we assessed the safety and efficacy of tandem autologous hematopoietic stem cell transplantation (auto-HSCT) strategy for adult T-LBL and evaluated prognostic factors affecting survival. 181 Newly-diagnosed adult T-LBL patients were enrolled, 89 patients were treated with chemotherapy alone, 46 patients were allocated to single auto-HSCT group, 46 patients were treated with tandem auto-HSCT. The median follow-up time was 37 months, the 3-year progression/relapse rate of the tandem auto-HSCT group was significantly lower than that of the single auto-HSCT group and chemotherapy group (26.5% vs 53.1% and 54.8%). The 3-year PFS and OS rate of the tandem auto-HSCT group (73.5% and 76.3%) were significantly higher than those of the single auto-HSCT group (46.9% and 58.3%) and the chemotherapy group (45.1% and 57.1%). In the tandem auto-HSCT group, age and disease status after the first transplantation impacted the OS and PFS. Multivariate analysis identified that disease status after the first transplantation was the only independent prognostic factor for patients treated with tandem-HSCT. In addition, diagnostic models of the initial CD8+CD28+/CD8+CD28- T cell ratio in predicting the disease status were found to be significant. Taken together, tandem auto-HSCT can be considered an optimal strategy for adult T-LBL patients (ChiCTR-ONN-16008480).


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Recurrencia Local de Neoplasia , Adulto , China/epidemiología , Supervivencia sin Enfermedad , Humanos , Estudios Prospectivos , Estudios Retrospectivos , Linfocitos T , Trasplante Autólogo , Resultado del Tratamiento
12.
Am J Hematol ; 96(5): 561-570, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33606900

RESUMEN

Globally, postpartum hemorrhage (PPH) is the leading cause of maternal death. Women with immune thrombocytopenia (ITP) are at increased risk of developing PPH. Early identification of PPH helps to prevent adverse outcomes, but is underused because clinicians do not have a tool to predict PPH for women with ITP. We therefore conducted a nationwide multicenter retrospective study to develop and validate a prediction model of PPH in patients with ITP. We included 432 pregnant women (677 pregnancies) with primary ITP from 18 academic tertiary centers in China from January 2008 to August 2018. A total of 157 (23.2%) pregnancies experienced PPH. The derivation cohort included 450 pregnancies. For the validation cohort, we included 117 pregnancies in the temporal validation cohort and 110 pregnancies in the geographical validation cohort. We assessed 25 clinical parameters as candidate predictors and used multivariable logistic regression to develop our prediction model. The final model included seven variables and was named MONITOR (maternal complication, WHO bleeding score, antepartum platelet transfusion, placental abnormalities, platelet count, previous uterine surgery, and primiparity). We established an easy-to-use risk heatmap and risk score of PPH based on the seven risk factors. We externally validated this model using both a temporal validation cohort and a geographical validation cohort. The MONITOR model had an AUC of 0.868 (95% CI 0.828-0.909) in internal validation, 0.869 (95% CI 0.802-0.937) in the temporal validation, and 0.811 (95% CI 0.713-0.908) in the geographical validation. Calibration plots demonstrated good agreement between MONITOR-predicted probability and actual observation in both internal validation and external validation. Therefore, we developed and validated a very accurate prediction model for PPH. We hope that the model will contribute to more precise clinical care, decreased adverse outcomes, and better health care resource allocation.


Asunto(s)
Hemorragia Posparto/etiología , Complicaciones Hematológicas del Embarazo , Púrpura Trombocitopénica Idiopática/complicaciones , Adulto , Área Bajo la Curva , China/epidemiología , Estudios de Cohortes , Susceptibilidad a Enfermedades , Registros Electrónicos de Salud , Femenino , Estudios de Seguimiento , Predicción , Geografía Médica , Humanos , Inmunoglobulinas Intravenosas/uso terapéutico , Inmunosupresores/uso terapéutico , Recién Nacido , Modelos Logísticos , Modelos Teóricos , Hemorragia Posparto/epidemiología , Hemorragia Posparto/prevención & control , Prednisona/uso terapéutico , Embarazo , Resultado del Embarazo , Pronóstico , Púrpura Trombocitopénica Idiopática/tratamiento farmacológico , Púrpura Trombocitopénica Idiopática/terapia , Estudios Retrospectivos , Factores de Riesgo , Centros de Atención Terciaria/estadística & datos numéricos
13.
J Biochem Mol Toxicol ; 35(6): 1-8, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33749080

RESUMEN

Leukemia is a malignant tissue-forming disease, which induces the overproduction of large numbers of immature blood cells entering the peripheral blood. It is well documented that inflammation plays a crucial role in the expansion of leukemia. Daphnetin has confirmed anti-inflammatory effects against various diseases. In this experimental study, we evaluated the anti-leukemia and anti-inflammatory effect of daphnetin against benzene-induced leukemia in rats and explored the underlying mechanism. Benzene was used for inducing leukemia in experimental rats. The rats were divided into different groups and the body weight, hematological parameters, bone marrow cells, cytokines, and inflammatory mediators were estimated. Reverse transcription polymerase chain reaction (RT-PCR) was used for estimating the messenger RNA (mRNA) expression of sphingosine-1-phosphate receptor-1. Daphnetin-treated rats showed upregulation of body weight compared to other groups. Moreover, Daphnetin reduced blasts in leukemic rats. It also altered hematological parameters such as red blood cells, white blood cells, lymphocytes, neutrophils, monocytes, eosinophils, monocytes, and basophils, respectively. Daphnetin-treated rats showed a reduction of pro-inflammatory cytokines such as tumor necrosis factor-α, interleukin-1ß (IL-1ß), IL-2, IL-6, and inflammatory mediators including nuclear factor-κB. RT-PCR showed upregulated mRNA expression of sphingosine-1-phosphate receptor-1 of daphnetin-treated group rats compared to other groups. The current study showed that the anti-inflammatory effect of daphnetin against the benzene-induced leukemia via alteration of cytokines.


Asunto(s)
Antineoplásicos/farmacología , Benceno/toxicidad , Citocinas/metabolismo , Leucemia/metabolismo , Proteínas de Neoplasias/metabolismo , Umbeliferonas/farmacología , Animales , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Leucemia/inducido químicamente , Leucemia/tratamiento farmacológico , Ratas , Ratas Wistar
14.
J Nat Prod ; 83(5): 1453-1460, 2020 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-32319765

RESUMEN

An enantiomeric pair of rare cyperane-type sesquiterpenoids, (+)- and (-)-gracilistones C (1a, 1b), together with a novel norsesquiterpenoid, gracilistone D (2), bearing a bicyclic lactone system were isolated from the root bark of Acanthopanax gracilistylus using LC-MS-IT-TOF analyses. The structures and absolute configurations of 1a, 1b, and 2 were elucidated by 1D and 2D NMR spectroscopy, X-ray diffraction, and ECD spectroscopic methods. Intermediate 1b suggests a possible biosynthesis process involving compound 2. The bioassay results showed that compounds 1a, 1b, and 2 exhibited significant inhibitory effects against lipopolysaccharide-induced nitric oxide production in RAW 264.7 cells, with IC50 values of 7.7 ± 0.6, 6.8 ± 1.5, and 2.6 ± 0.4 µM, respectively. Additional docking analyses provided some perspective of this activity in human inducible nitric oxide synthase.


Asunto(s)
Araliaceae/química , Óxido Nítrico/antagonistas & inhibidores , Corteza de la Planta/química , Sesquiterpenos/química , Sesquiterpenos/farmacología , Animales , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Ratones , Simulación del Acoplamiento Molecular , Estructura Molecular , Óxido Nítrico/biosíntesis , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Células RAW 264.7 , Difracción de Rayos X
15.
Mol Pharmacol ; 96(1): 1-12, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31015282

RESUMEN

The human ether-à-go-go-related gene (hERG) encodes the channel that conducts the rapidly activating delayed rectifier potassium current (IKr) in the heart. Reduction in IKr causes long QT syndrome, which can lead to fatal arrhythmias triggered by stress. One potential link between stress and hERG function is protein kinase C (PKC) activation; however, seemingly conflicting results regarding PKC regulation of hERG have been reported. We investigated the effects of PKC activation using phorbol 12-myristate 13-acetate (PMA) on hERG channels expressed in human embryonic kidney cell line 293 (HEK293) cells and IKr in isolated neonatal rat ventricular myocytes. Acute activation of PKC by PMA (30 nM, 30 minutes) reduced both hERG current (IhERG) and IKr Chronic activation of PKC by PMA (30 nM, 16 hours) increased IKr in cardiomyocytes and the expression level of hERG proteins; however, chronic (30 nM, 16 hours) PMA treatment decreased IhERG, which became larger than untreated control IhERG after PMA removal for 4 hours. Deletion of amino acid residues 2-354 (Δ2-354 hERG) or 1-136 of the N terminus (ΔN 136 hERG) abolished acute PMA (30 nM, 30 minutes)-mediated IhERG reduction. In contrast to wild-type hERG channels, chronic activation of PKC by PMA (30 nM, 16 hours) increased both Δ2-354 hERG and ΔN136 hERG expression levels and currents. The increase in hERG protein was associated with PKC-induced phosphorylation (inhibition) of Nedd4-2, an E3 ubiquitin ligase that mediates hERG degradation. We conclude that PKC regulates hERG in a balanced manner, increasing expression through inhibiting Nedd4-2 while decreasing current through targeting a site(s) within the N terminus.


Asunto(s)
Canal de Potasio ERG1/genética , Canal de Potasio ERG1/metabolismo , Miocitos Cardíacos/metabolismo , Proteína Quinasa C/metabolismo , Acetato de Tetradecanoilforbol/farmacología , Animales , Animales Recién Nacidos , Células Cultivadas , Canal de Potasio ERG1/química , Activación Enzimática/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Miocitos Cardíacos/efectos de los fármacos , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Fosforilación , Proteolisis , Eliminación de Secuencia
16.
J Biol Chem ; 293(40): 15347-15358, 2018 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-30121572

RESUMEN

The voltage-gated potassium channel Kv1.5 belongs to the Shaker superfamily. Kv1.5 is composed of four subunits, each comprising 613 amino acids, which make up the N terminus, six transmembrane segments (S1-S6), and the C terminus. We recently demonstrated that, in HEK cells, extracellularly applied proteinase K (PK) cleaves Kv1.5 channels at a single site in the S1-S2 linker. This cleavage separates Kv1.5 into an N-fragment (N terminus to S1) and a C-fragment (S2 to C terminus). Interestingly, the cleavage does not impair channel function. Here, we investigated the role of the N terminus and S1 in Kv1.5 expression and function by creating plasmids encoding various fragments, including those that mimic PK-cleaved products. Our results disclosed that although expression of the pore-containing fragment (Frag(304-613)) alone could not produce current, coexpression with Frag(1-303) generated a functional channel. Immunofluorescence and biotinylation analyses uncovered that Frag(1-303) was required for Frag(304-613) to traffic to the plasma membrane. Biochemical analysis revealed that the two fragments interacted throughout channel trafficking and maturation. In Frag(1-303)+(304-613)-coassembled channels, which lack a covalent linkage between S1 and S2, amino acid residues 1-209 were important for association with Frag(304-613), and residues 210-303 were necessary for mediating trafficking of coassembled channels to the plasma membrane. We conclude that the N terminus and S1 of Kv1.5 can attract and coassemble with the rest of the channel (i.e. Frag(304-613)) to form a functional channel independently of the S1-S2 linkage.


Asunto(s)
Canal de Potasio Kv1.5/química , Potenciales de la Membrana/fisiología , Fragmentos de Péptidos/química , Subunidades de Proteína/química , Endopeptidasa K/farmacología , Expresión Génica , Células HEK293 , Humanos , Transporte Iónico/efectos de los fármacos , Canal de Potasio Kv1.5/genética , Canal de Potasio Kv1.5/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Plásmidos/química , Plásmidos/metabolismo , Dominios Proteicos , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Transporte de Proteínas , Relación Estructura-Actividad , Transformación Genética
17.
FASEB J ; 32(4): 1933-1943, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32172531

RESUMEN

The human ether-a-go-go related gene (hERG)-encoded channel hERG undergoes N-linked glycosylation at position 598, which is located in the unusually long S5-pore linker of the channel. In other work we have demonstrated that hERG is uniquely susceptible to proteolytic cleavage at the S5-pore linker by proteinase K (PK) and calpain (CAPN). The scorpion toxin BeKm-1, which binds to the S5-pore linker of hERG, protects hERG from such cleavage. In the present study, our data revealed that, compared with normal glycosylated hERG channels, nonglycosylated hERG channels were significantly more susceptible to cleavage by extracellular PK. Furthermore, the protective effect of BeKm-1 on hERG from PK-cleavage was lost when glycosylation of hERG was inhibited. The inactivation-deficient mutant hERG channels S620T and S631A were resistant to PK cleavage, and inhibition of glycosylation rendered both mutants susceptible to PK cleavage. Compared with normal glycosylated channels, nonglycosylated hERG channels were also more susceptible to cleavage mediated by CAPN, which was present in the medium of human embryonic kidney cells under normal culture conditions. Inhibition of CAPN resulted in an increase of nonglycosylated hERG current. In summary, our results revealed that N-linked glycosylation protects hERG against protease-mediated degradation and thus contributes to hERG channel stability on the plasma membrane.- Lamothe, S. M., Hulbert, M., Guo, J., Li, W., Yang, T., Zhang, S. Glycosylation stabilizes hERG channels on the plasma membrane by decreasing proteolytic susceptibility. FASEB J. 32, 1933-1943 (2018). www.fasebj.org.

18.
FASEB J ; 31(11): 5068-5077, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28784631

RESUMEN

Human ether-a-go-go-related gene (hERG) encodes the pore-forming subunit of the rapidly activating delayed rectifier potassium current (IKr) potassium channel, which is important for cardiac repolarization. Impairment of hERG function is the primary cause of acquired long QT syndrome, which predisposes individuals to cardiac arrhythmias and sudden death. Patients with hypoxia due to conditions such as cardiac ischemia or obstructive sleep apnea display increased incidence of cardiac arrhythmias and sudden death. We sought to understand the mechanisms that underlie hypoxia-associated cardiac arrhythmias. Using cell biology and electrophysiologic techniques, we found that hypoxic culture of hERG-expressing human embryonic kidney (HEK) cells and neonatal rat cardiomyocytes reduced hERG current/IKr and mature ERG channel expression with a concomitant increase in calpain expression. Calpain was actively released into the extracellular milieu and degraded cell-surface hERG. In contrast to hERG, the ether-a-go-go (EAG) channel was not reduced by hypoxic culture. By making chimeric channels between hERG and EAG, we identified that hypoxia-induced calpain degraded hERG by targeting its extracellular S5-pore linker. The scorpion toxin BeKm-1, which is known to selectively bind to the S5-pore linker of hERG, prevented hypoxia-induced hERG reduction. Our data provide novel information about hypoxia-mediated hERG dysfunction and may have biological and clinical implications in hypoxia-associated diseases.-Lamothe, S. M., Song, W., Guo, J., Li, W., Yang, T., Baranchuk, A., Graham, C. H., Zhang, S. Hypoxia reduces mature hERG channels through calpain up-regulation.


Asunto(s)
Calpaína/biosíntesis , Canal de Potasio ERG1/metabolismo , Regulación Enzimológica de la Expresión Génica , Síndrome de QT Prolongado/metabolismo , Miocitos Cardíacos/metabolismo , Regulación hacia Arriba , Calpaína/genética , Hipoxia de la Célula/efectos de los fármacos , Hipoxia de la Célula/genética , Canal de Potasio ERG1/genética , Células HEK293 , Humanos , Síndrome de QT Prolongado/genética , Venenos de Escorpión/toxicidad
19.
Mol Pharmacol ; 92(2): 162-174, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28495999

RESUMEN

The rapidly activating delayed rectifier K+ channel (IKr) is encoded by the human ether-a-go-go-related gene (hERG), which is important for the repolarization of the cardiac action potential. Mutations in hERG or drugs can impair the function or decrease the expression level of hERG channels, leading to long QT syndrome. Thus, it is important to understand hERG channel trafficking and its regulation. For this purpose, G protein-coupled receptors (GPCRs), which regulate a vast array of cellular processes, represent a useful route. The development of designer GPCRs known as designer receptors exclusively activated by designer drugs (DREADDs) has made it possible to dissect specific GPCR signaling pathways in various cellular systems. In the present study, by expressing an arrestin-biased M3 muscarinic receptor-based DREADD (M3D-arr) in stable hERG-expressing human embryonic kidney (HEK) cells, we demonstrate that ß-arrestin signaling plays a role in hERG regulation. By exclusively activating M3D-arr using the otherwise inert compound, clozapine-N-oxide, we found that M3D-arr activation increased mature hERG expression and current. Within this paradigm, M3D-arr recruited ß-arrestin-1 to the plasma membrane, and promoted phosphoinositide 3-kinase-dependent activation of protein kinase B (Akt). The activated Akt acted through phosphatidylinositol 3-phosphate 5-kinase and Rab11 to facilitate hERG recycling to the plasma membrane. Potential ß-arrestin signaling-mediated increases in hERG and IKr were also observed in hERG-HEK cells as well as in neonatal rat ventricular myocytes treated with the muscarinic agonist carbachol. These findings provide novel insight into hERG trafficking and regulation.


Asunto(s)
Canal de Potasio ERG1/metabolismo , beta-Arrestinas/metabolismo , Animales , Clozapina/análogos & derivados , Clozapina/metabolismo , Clozapina/farmacología , Relación Dosis-Respuesta a Droga , Canal de Potasio ERG1/agonistas , Femenino , Células HEK293 , Humanos , Masculino , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Ratas , Ratas Sprague-Dawley
20.
J Biol Chem ; 291(39): 20387-401, 2016 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-27502273

RESUMEN

The human ether-a-go-go-related gene (hERG) encodes the pore-forming subunit of the rapidly activating delayed rectifier potassium channel (IKr), which is important for cardiac repolarization. Dysfunction of hERG causes long QT syndrome and sudden death, which occur in patients with cardiac ischemia. Cardiac ischemia is also associated with activation, up-regulation, and secretion of various proteolytic enzymes. Here, using whole-cell patch clamp and Western blotting analysis, we demonstrate that the hERG/IKr channel was selectively cleaved by the serine protease, proteinase K (PK). Using molecular biology techniques including making a chimeric channel between protease-sensitive hERG and insensitive human ether-a-go-go (hEAG), as well as application of the scorpion toxin BeKm-1, we identified that the S5-pore linker of hERG is the target domain for proteinase K cleavage. To investigate the physiological relevance of the unique susceptibility of hERG to proteases, we show that cardiac ischemia in a rabbit model was associated with a reduction in mature ERG expression and an increase in the expression of several proteases, including calpain. Using cell biology approaches, we found that calpain-1 was actively released into the extracellular milieu and cleaved hERG at the S5-pore linker. Using protease cleavage-predicting software and site-directed mutagenesis, we identified that calpain-1 cleaves hERG at position Gly-603 in the S5-pore linker of hERG. Clarification of protease-mediated damage of hERG extends our understanding of hERG regulation. Damage of hERG mediated by proteases such as calpain may contribute to ischemia-associated QT prolongation and sudden cardiac death.


Asunto(s)
Canal de Potasio ERG1/metabolismo , Isquemia Miocárdica/metabolismo , Proteolisis , Animales , Calpaína/biosíntesis , Calpaína/química , Calpaína/genética , Canal de Potasio ERG1/química , Canal de Potasio ERG1/genética , Endopeptidasa K/química , Células HEK293 , Humanos , Masculino , Isquemia Miocárdica/genética , Conejos , Venenos de Escorpión/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA