Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 363
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
EMBO Rep ; 25(7): 2861-2877, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38839944

RESUMEN

In developing olfactory bulb (OB), mitral cells (MCs) remodel their dendrites to establish the precise olfactory circuit, and these circuits are critical for individuals to sense odors and elicit behaviors for survival. However, how microtubules (MTs) participate in the process of dendritic remodeling remains elusive. Here, we reveal that calmodulin-regulated spectrin-associated proteins (CAMSAPs), a family of proteins that bind to the minus-end of the noncentrosomal MTs, play a crucial part in the development of MC dendrites. We observed that Camsap2 knockout (KO) males are infertile while the reproductive tract is normal. Further study showed that the infertility was due to the severe defects of mating behavior in male mice. Besides, mice with loss-of-function displayed defects in the sense of smell. Furthermore, we found that the deficiency of CAMSAP2 impairs the classical morphology of MCs, and the CAMSAP2-dependent dendritic remodeling process is responsible for this defect. Thus, our findings demonstrate that CAMSAP2 plays a vital role in regulating the development of MCs.


Asunto(s)
Dendritas , Ratones Noqueados , Proteínas Asociadas a Microtúbulos , Bulbo Olfatorio , Olfato , Animales , Ratones , Masculino , Olfato/fisiología , Bulbo Olfatorio/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Dendritas/metabolismo , Morfogénesis/genética , Microtúbulos/metabolismo , Femenino
2.
Proc Natl Acad Sci U S A ; 120(45): e2313787120, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37903275

RESUMEN

The manchette is a crucial transient structure involved in sperm development, with its composition and regulation still not fully understood. This study focused on investigating the roles of CAMSAP1 and CAMSAP2, microtubule (MT) minus-end binding proteins, in regulating manchette MTs, spermiogenesis, and male fertility. The loss of CAMSAP1, but not CAMSAP2, disrupts the well-orchestrated process of spermiogenesis, leading to abnormal manchette elongation and delayed removal, resulting in deformed sperm nuclei and tails resembling oligoasthenozoospermia symptoms. We investigated the underlying molecular mechanisms by purifying manchette assemblies and comparing them through proteomic analysis, and results showed that the absence of CAMSAP1 disrupted the proper localization of key proteins (CEP170 and KIF2A) at the manchette minus end, compromising its structural integrity and hindering MT depolymerization. These findings highlight the significance of maintaining homeostasis in manchette MT minus-ends for shaping manchette morphology during late spermiogenesis, offering insights into the molecular mechanisms underlying infertility and sperm abnormalities.


Asunto(s)
Proteómica , Semen , Humanos , Masculino , Espermatogénesis/fisiología , Microtúbulos/metabolismo , Fertilidad
3.
J Am Chem Soc ; 146(15): 10908-10916, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38579155

RESUMEN

Self-assembly of sophisticated polyhedral cages has drawn much attention because of their elaborate structures and potential applications. Herein, we report the anion-coordination-driven assembly of the first A8L12 (A = anion, L = ligand) octanuclear cubic structures from phosphate anion and p-xylylene-spaced bis-bis(urea) ligands via peripheral templating of countercations (TEA+ or TPA+). By attaching terminal aryl rings (phenyl or naphthyl) to the ligand through a flexible (methylene) linker, these aryls actively participate in the formation of plenty of "aromatic pockets" for guest cation binding. As a result, multiple peripheral guests (up to 22) of suitable size are bound on the faces and vertices of the cube, forming a network of cation-π interactions to stabilize the cube structure. More interestingly, when chiral ligands were used, either diastereomers of mixed Λ- and Δ-configurations (with TEA+ countercation) for the phosphate coordination centers or enantiopure cubes (with TPA+) were formed. Thus, the assembly and chirality of the cube can be modulated by remote terminal groups and peripheral templating tetraalkylammonium cations.

4.
J Am Chem Soc ; 146(4): 2333-2338, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38241610

RESUMEN

Odd-electron bonds, i.e., the two-center, three-electron (2c/3e), or one-electron (2c/1e) bonds, have attracted tremendous interest owing to their novel bonding nature and radical properties. Herein, complex [K(THF)6][LSn:···Sn:L] (1), featuring the first and unsupported 2c/1e Sn···Sn σ-bond with a long distance (3.2155(9) Å), was synthesized by reduction of stannylene [LSn:] (L = N,N-dpp-o-phenylene diamide) with KC8. The one-electron Sn-Sn bond in 1 was confirmed by the crystal structure, DFT calculations, EPR spectroscopy, and reactivity studies. This compound can be viewed as a stabilized radical by delocalizing to two metal centers and can readily mediate radical reactions such as C-C coupling of benzaldehyde.

5.
Inorg Chem ; 63(29): 13558-13567, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38962945

RESUMEN

The α-diimine-ligated Zn-Zn-bonded compound [K(THF)2]2[LZn-ZnL] (1, L = [(2,6-iPr2C6H3)NC(Me)]22-) displays diverse reactivities toward a variety of ketones. In the reaction of 1 with benzophenone or 4,4'-di-tert-butylbenzophenone, a multielectron transfer process was observed to give bimetallic (Zn/K) complexes with both ketyl radical fragments and C-C coupled pinacolate moieties (products 2 and 3). In contrast, treating 1 with 9-fluorenone only afforded pinacolate complex 5. Moreover, the reactions of 1 with N- or O-heterocycle-functionalized ketones, i.e., di(2-pyridyl)ketone, 2,2-pyrrolidinone, 9-xanthenone, or 10-methyl-9(10H)-acridone, were also carried out. Besides different transformations of the ketone moiety, the heteroatoms (nitrogen or oxygen) are also involved in coordination with zinc or potassium ions, yielding discrete aggregates or polymeric structures of products 6-9.

6.
Bioorg Med Chem ; 101: 117651, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38401457

RESUMEN

Lysine-specific demethylase 1 (LSD1) is a histone lysine demethylase that is significantly overexpressed or dysregulated in different cancers and plays important roles in cell growth, invasion, migration, immune escape, angiogenesis, gene regulation, and transcription. Therefore, it is a superb target for the discovery of novel antitumor agents. However, because of their innate and acquired resistance and low selectivity, LSD1 inhibitors are associated with limited therapeutic efficacy and high toxicity. Furthermore, LSD1 inhibitors synergistically improve the efficacy of additional antitumor drugs, which encourages numerous medicinal chemists to innovate and develop new-generation LSD1-based dual-target agents. This review discusses the theoretical foundation of the design of LSD1-based dual-target agents and summarizes their possible applications in treating cancers.


Asunto(s)
Antineoplásicos , Histona Demetilasas , Neoplasias , Humanos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Regulación de la Expresión Génica , Histona Demetilasas/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Neoplasias/patología
7.
Lipids Health Dis ; 23(1): 226, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39049120

RESUMEN

BACKGROUND: The impact of exercise dosages based on American College of Sports Medicine(ACSM) recommendations on lipid metabolism in patients after PCI remains unclear. This study conducted a meta-analysis of reported exercise dosages from the literature to address this knowledge gap. METHODS: A comprehensive search of databases was conducted to identify eligible randomized controlled studies of exercise interventions in patients after PCI, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. Based on the recommended exercise dosages from ACSM for patients with coronary heart disease, exercise doses in the literature that met the inclusion criteria were categorized into groups that were highly compliant with ACSM recommendations and those with low or uncertain ACSM recommendations. The topic was the effect of exercise dose on lipid metabolism in post-PCI patients. This was assessed using standardized mean difference (SMD) and 95% confidence intervals (95% CI) for changes in triglycerides, total cholesterol, LDL, and HDL. RESULTS: This systematic review included 10 randomized controlled studies. The subgroup analysis revealed statistically significant differences in the high compliance with ACSM recommendations group for triglycerides [SMD=-0.33 (95% CI -0.62, -0.05)], total cholesterol [SMD=-0.55 (95% CI -0.97, -0.13)], low-density lipoprotein [SMD=-0.31 (95% CI -0.49, -0.13)], high-density lipoprotein [SMD = 0.23 (95% CI 0.01, 0.46)], and body mass index [SMD=-0.52 (95% CI -0.87, -0.17)]. Compared to the low or uncertain compliance with ACSM recommendations group, the high compliance group exhibited significant differences in improving TC levels (-0.55(H) vs. -0.46(L)), HDL levels (0.23(H) vs. 0.22(L)), and BMI (-0.52(H) vs. -0.34(L)). CONCLUSIONS: This study supports that high compliance with ACSM-recommended exercise dosages has significant impacts on improving TC levels, HDL levels, and BMI. However, no advantage was observed for TG or LDL levels.


Asunto(s)
Ejercicio Físico , Metabolismo de los Lípidos , Intervención Coronaria Percutánea , Ensayos Clínicos Controlados Aleatorios como Asunto , Triglicéridos , Humanos , Ejercicio Físico/fisiología , Triglicéridos/sangre , Medicina Deportiva , HDL-Colesterol/sangre , Colesterol/sangre , Masculino , LDL-Colesterol/sangre , Terapia por Ejercicio
8.
Acta Biochim Biophys Sin (Shanghai) ; 56(5): 763-775, 2024 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-38516703

RESUMEN

Traditional Chinese medicine (TCM) has been used to treat triple-negative breast cancer (TNBC), a breast cancer subtype with poor prognosis. Clinical studies have verified that the Sanyingfang formula (SYF), a TCM prescription, has obvious effects on inhibiting breast cancer recurrence and metastasis, prolonging patient survival, and reducing clinical symptoms. However, its active ingredients and molecular mechanisms are still unclear. In this study, the active ingredients of each herbal medicine composing SYF and their target proteins are obtained from the Traditional Chinese Medicine Systems Pharmacology database. Breast cancer-related genes are obtained from the GeneCards database. Major targets and pathways related to SYF treatment in breast cancer are identified by analyzing the above data. By conducting molecular docking analysis, we find that the active ingredients quercetin and luteolin bind well to the key targets KDR1, PPARG, SOD1, and VCAM1. In vitro experiments verify that SYF can reduce the proliferation, migration, and invasion ability of TNBC cells. Using a TNBC xenograft mouse model, we show that SYF could delay tumor growth and effectively inhibit the occurrence of breast cancer lung metastasis in vivo. PPARG, SOD1, KDR1, and VCAM1 are all regulated by SYF and may play important roles in SYF-mediated inhibition of TNBC recurrence and metastasis.


Asunto(s)
Proliferación Celular , Medicamentos Herbarios Chinos , Simulación del Acoplamiento Molecular , Neoplasias de la Mama Triple Negativas , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/química , Humanos , Animales , Femenino , Ratones , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Farmacología en Red , Movimiento Celular/efectos de los fármacos , Ratones Desnudos , Luteolina/farmacología , Luteolina/uso terapéutico , Ratones Endogámicos BALB C , Quercetina/farmacología , Quercetina/química , Medicina Tradicional China , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
9.
Angew Chem Int Ed Engl ; 63(14): e202401228, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38354230

RESUMEN

Functional thin films, being fabricated by incorporating discrete supramolecular architectures, have potential applications in research areas such as sensing, energy storage, catalysis, and optoelectronics. Here, we have determined that an anion-coordinated triple helicate can be solution-processed into a functional thin film by incorporation into a polymethyl methacrylate (PMMA) matrix. The thin films fabricated by the incorporation of the anion-coordinated triple helicate show multiple optical properties, such as fluorescence, CD, and CPL. In addition, the film has the ability to recognize choline and choline derivatives in a water system. The successful recognition of Ch+ by the film represents the first example of utilizing 'aniono'-supramolecular architectures for biomolecule detection in aqueous solution and opens up a new route for designing biocompatible functional materials.

10.
Angew Chem Int Ed Engl ; : e202406946, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802316

RESUMEN

Control of phosphate capture and release is vital in environmental, biological, and pharmaceutical contexts. However, the binding of trivalent phosphate (PO4 3-) in water is exceptionally difficult due to its high hydration energy. Based on the anion coordination chemistry of phosphate, in this study, four charge-neutral tripodal hexaurea receptors (L1-L4), which were equipped with morpholine and polyethylene glycol terminal groups to enhance their solubility in water, were synthesized to enable the pH-triggered phosphate binding and release in aqueous solutions. Encouragingly, the receptors were found to bind PO4 3- anion in a 1 : 1 ratio via hydrogen bonds in 100 % water solutions, with L1 exhibiting the highest binding constant (1.2×103 M-1). These represent the first neutral anion ligands to bind phosphate in 100 % water and demonstrate the potential for phosphate capture and release in water through pH-triggered mechanisms, mimicking native phosphate binding proteins. Furthermore, L1 can also bind multiple bioavailable phosphate species, which may serve as model systems for probing and modulating phosphate homeostasis in biological and biomedical researches.

11.
Acc Chem Res ; 55(22): 3218-3229, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36331808

RESUMEN

The assembly of discrete architectures has been an important subject in supramolecular chemistry because of their elegant structures and fascinating properties. During the last several decades, supramolecular chemists have developed manifold strategies for hierarchical assembly, which are normally classified by two main types of driving force: covalent and noncovalent interactions. Typical noncovalent interactions include metal coordination, hydrogen bonding, and other weak forces. These approaches have achieved great progress in the construction of various supramolecular structures, such as macrocycles, cages, polyhedra, and interlocked systems. Among these methods, metal-coordination-driven assembly is attractive due to the well-defined coordination properties of metal ions. Indeed, in terms of supramolecular chemistry, the concept of "coordination" has been expanded beyond transition metals. In particular, anion coordination chemistry, which was first proposed by Lehn in 1978 [ Acc. Chem. Res. 1978, 11, 49] and then elucidated in detail by Bowman-James two decades later [ Acc. Chem. Res. 2005, 38, 671], has grown up to a subfield of supramolecular chemistry. It is noticeable that anions also show "dual valencies" like transition metals, wherein the "primary valence" is the charge balance for anions by countercations while the "secondary valence", i.e., the coordination, refers to hydrogen bonding interactions where the electron flow is from the electron-rich anion (the coordination center) to hydrogen bonding donors (the ligands). Thus, anions also display certain coordination numbers and specific coordination geometries. Although such features are far less regular than those of transition metals, they are sufficient to allow anion coordination to serve as the driving force for assembling discrete supramolecular architectures. In this Account, the anion-coordination-driven assembly (ACDA), a new assembling strategy established by us during the past decade, will be presented. We summarize our work in the construction of a series of "aniono" supramolecular structures, especially triple helicates and tetrahedral cages, based on the coordination between oligourea ligands and anions (mostly phosphate). In particular, we will detail the considerations in the design of ligands, the assembling process including structural transformation, and functionalization of the systems toward guest inclusion, supramolecular catalysis, photoswitches, and molecular devices. These results demonstrate the great potential of ACDA in fabricating novel anion-based systems. Although the design concept was originally loaned from traditional coordination chemistry of transition metals, and structures of anion complexes bear some resemblance to metal complexes, there are significant differences of the aniono supramolecular assemblies from the metallo analogues. For example, these metal-free systems are held together by multiple hydrogen bonds (dozens to nearly 100), thus facilitating assembly/disassembly under mild conditions and relatively flexible structures for adaptive guest inclusion. To this end, intriguing applications (supramolecular chirality, catalysis, energy storage, etc.) may be expected for aniono systems. We hope the current Account will attract more attention from researchers in supramolecular assembly and inspire more efforts in this fascinating area.


Asunto(s)
Complejos de Coordinación , Elementos de Transición , Aniones/química , Ligandos , Complejos de Coordinación/química , Enlace de Hidrógeno , Metales/química
12.
Glob Chang Biol ; 29(11): 2871-2885, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36861355

RESUMEN

Projecting the dynamics and functioning of the biosphere requires a holistic consideration of whole-ecosystem processes. However, biases toward leaf, canopy, and soil modeling since the 1970s have constantly left fine-root systems being rudimentarily treated. As accelerated empirical advances in the last two decades establish clearly functional differentiation conferred by the hierarchical structure of fine-root orders and associations with mycorrhizal fungi, a need emerges to embrace this complexity to bridge the data-model gap in still extremely uncertain models. Here, we propose a three-pool structure comprising transport and absorptive fine roots with mycorrhizal fungi (TAM) to model vertically resolved fine-root systems across organizational and spatial-temporal scales. Emerging from a conceptual shift away from arbitrary homogenization, TAM builds upon theoretical and empirical foundations as an effective and efficient approximation that balances realism and simplicity. A proof-of-concept demonstration of TAM in a big-leaf model both conservatively and radically shows robust impacts of differentiation within fine-root systems on simulating carbon cycling in temperate forests. Theoretical and quantitative support warrants exploiting its rich potentials across ecosystems and models to confront uncertainties and challenges for a predictive understanding of the biosphere. Echoing a broad trend of embracing ecological complexity in integrative ecosystem modeling, TAM may offer a consistent framework where modelers and empiricists can work together toward this grand goal.


Asunto(s)
Ecosistema , Micorrizas , Raíces de Plantas , Bosques , Hojas de la Planta , Raíces de Plantas/microbiología , Suelo/química , Árboles/microbiología
13.
Chemistry ; 29(44): e202301266, 2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37226708

RESUMEN

The α-diimine-ligated dimagnesium(I) compound [K(thf)3 ]2 [LMg-MgL] (1, L=[(2,6-iPr2 C6 H3 )NC(Me)]2 2- ) displays diverse reactivities toward carbodiimides (RN=C=NR) with different R substituents. In the reaction of 1 with Me3 SiNCNSiMe3 , one of the easily leaving trimethylsilyl groups is lost to yield the Me3 SiNCN- moiety that either bridges two MgII centers (2) or terminally coordinated (3). In contrast, with the similarly bulky tBuNCNtBu, the carbodiimide inserts into Mg-Mg bond with accompanying C-H activation of a ligand or solvent (products 4 and 5). In the case of dicyclohexyl or diisopropyl carbodiimide, reductive C-C coupling of two RNCNR molecules occurs to form the [C2 (NR)4 ]2- diamido moiety, which bridges two Mg centers, giving complexes [{K(dme)2 }2 LMg(µ-{C2 (NR)4 })MgL] (6, R=Cy; 7, R=iPr) and [L⋅- Mg(µ-{C2 (NR)4 })MgL⋅- ] (8). Most interestingly, upon treating 1 with Me3 SiC≡CSiMe3 , the acetylide complex [K(dme)][LMg(C≡CSiMe3 )(dme)] (9) was prepared, which undergoes a rare "double insertion" with CyNCNCy to afford [K(solv)][K(dme)2 LMg(NCy)2 C-C≡C-C(NCy)2 MgL] (10) containing an acetylenediide-coupled bis(amidinate) ligand that bridges two Mg atoms.

14.
EMBO Rep ; 22(7): e52154, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-34047007

RESUMEN

Super-resolution imaging has revealed that key synaptic proteins are dynamically organized within sub-synaptic domains (SSDs). To examine how different inhibitory receptors are regulated, we carried out dual-color direct stochastic optical reconstruction microscopy (dSTORM) of GlyRs and GABAA Rs at mixed inhibitory synapses in spinal cord neurons. We show that endogenous GlyRs and GABAA Rs as well as their common scaffold protein gephyrin form SSDs that align with pre-synaptic RIM1/2, thus creating trans-synaptic nanocolumns. Strikingly, GlyRs and GABAA Rs occupy different sub-synaptic spaces, exhibiting only a partial overlap at mixed inhibitory synapses. When network activity is increased by 4-aminopyridine treatment, the GABAA R copy numbers and the number of GABAA R SSDs are reduced, while GlyRs remain largely unchanged. This differential regulation is likely the result of changes in gephyrin phosphorylation that preferentially occurs outside of SSDs. The activity-dependent regulation of GABAA Rs versus GlyRs suggests that different signaling pathways control the receptors' sub-synaptic clustering. Taken together, our data reinforce the notion that the precise sub-synaptic organization of GlyRs, GABAA Rs, and gephyrin has functional consequences for the plasticity of mixed inhibitory synapses.


Asunto(s)
Receptores de GABA-A , Sinapsis , Proteínas Portadoras/genética , Neuronas , Receptores de GABA-A/genética , Médula Espinal
15.
Inorg Chem ; 62(16): 6288-6296, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37036292

RESUMEN

The reactivity of two α-diimine-ligated digallanes, [L2-Ga-GaL2-] (La = [(2,6-iPr2C6H3)NC(CH3)]2, dpp-dad, 1; Lb = 1,2-[(2,6-iPr2C6H3)NC]2C10H6, dpp-bian, 2), and a gallylene, [(La)2-GaNa(THF)3] (3), toward organic azides was studied. Reaction of digallane 1 or 2 with trimethylsilyl azide (Me3SiN3), 2-azido-benzonitrile (2-CNC6H4N3), or tosylazide (TosN3) results in imido-bridged complexes, [(La)·-Ga(µ-NSiMe3)2Ga(La)·-] (4) [(Lb)·-Ga(µ-NSiMe3)2Ga(Lb)·-] (5), [(Lb)·-Ga(µ-2-CNC6H4N)2Ga(Lb)·-] (6), and [(Lb)·-Ga(µ-NTos)2Ga(Lb)·-] (7), with elimination of dinitrogen. Treatment of 1 or 2 with 1-adamantyl azide (1-AdN3), on the other hand, affords the unsymmetrical dinuclear complexes [(La)·-Ga(NAd)(N3Ad)Ga(La)·-] (8) and [(Lb)·-Ga(NAd)(N3Ad)Ga(Lb)·-] (9), which contain both imido and triazene bridges. Different from the Ga(II) complexes 1 and 2, the reactions of Ga(I) species 3 with benzylazide or trimethylsilyl azide result in the tetrazene complex {Na(THF)}2[(La)2-Ga(benzyl-N4-benzyl)]2 (10) and amide complex {Na(THF)4}[(La)2-Ga(NHSiMe3)(benzyl)] (11). It is likely that these latter transformations proceed via the transient formation of the corresponding Ga═N imide complex, which undergoes either cycloaddition with a second azide (to form 10) or activation of the C-H bond of methyl in one solvent toluene molecule (to yield 11).

16.
Bioorg Med Chem ; 91: 117382, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37369169

RESUMEN

Signal transducer and activator of transcription 3 (STAT3), a transcription factor, regulates gene levels that are associated with cell survival, cell cycle, and immune reaction. It is correlated with the grade of malignancy and the development of various cancers and targeting STAT3 protein is a potentially promising therapeutic strategy for tumors. Over the past 20 years, various compounds have been found to directly inhibit STAT3 activity via different strategies. However, numerous difficulties exist in the development of STAT3 inhibitors, such as serious toxic effects, poor therapeutic effects, and intrinsic and acquired drug resistance. STAT3 inhibitors synergistically suppress cancer development with additional anti-tumor drugs, such as indoleamine 2,3-dioxygenase 1 inhibitors (IDO1i), histone deacetylase inhibitors (HDACi), DNA inhibitors, pro-tumorigenic cytokine inhibitors (PTCi), NF-κB inhibitors, and tubulin inhibitors. Therefore, individual molecule- based dual-target inhibitors can be the candidate alternative or complementary treatment to overcome the disadvantages of just STAT3 or other targets as a monotherapy. In this review, we discuss the theoretical basis for formulating STAT3-based dual-target inhibitors and also summarize their structure-activity relationships (SARs).


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Factor de Transcripción STAT3/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias/patología , ADN/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Línea Celular Tumoral
17.
Bioorg Chem ; 132: 106385, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36696730

RESUMEN

In the current study, a series of novel quinolinedione-linked sulfonylpiperazine derivatives have been reported as NQO1-directed antitumor agents. A majority of compounds in this study were found to be more effective in resisting the proliferation of cancer cells than that of the positive control 5-Fu and TSA. Among the tested compounds, the derivative 22r exhibited considerable effect (IC50, 3.29-5.19 µM) against the proliferation of three NQO1-rich cancer cells (HepG2, MCF-7, and A549), and was recognized to be an excellent NQO1 substrate as revealed by in vitro enzyme reduction assay and molecular docking study with NQO1. In studies on the mechanisms involved, 22r induced reactive oxygen species (ROS) production, caused DNA damage, and induced apoptosis in HepG2 cells. Remarkably, compound 22r exhibited excellent anticancer activity against HepG2 xenograft models in vivo. The study demonstrated that compound 22r provided a promising strategy for the management of malignant tumors.


Asunto(s)
Antineoplásicos , Humanos , Estructura Molecular , Relación Estructura-Actividad , Simulación del Acoplamiento Molecular , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Antineoplásicos/química , Apoptosis , Línea Celular Tumoral , Diseño de Fármacos , NAD(P)H Deshidrogenasa (Quinona)/metabolismo
18.
Bioorg Chem ; 136: 106541, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37062104

RESUMEN

The current work developed diverse novel napabucasin-melatonin hybrids as potent STAT3 inhibitors. Several biological studies have suggested many compounds demonstrating potent inhibition against different tumor cells. Among these, compound 7e depicted enhanced inhibition against HepG2, MDA-MB-231, and A549 cells than napabucasin, with IC50 values of 1.06, 1.38, and 1.3 µM, respectively. Based on fluorescence polarization analysis, compound 7e was bound to the SH2 domain in STAT3, with an IC50 value of 12.95 µM. Molecular docking further confirmed the 7e binding mode inside the SH2 domain of STAT3. Further mechanistic studies indicated that 7e inhibited the activation of STAT3 (Y705), and thus reduced the expression of STAT3 downstream genes (CyclinD1, Bcl-2 and c-Myc) instead of affecting p-STAT1 expression. Meanwhile, the phosphorylation levels of its upstream kinases JAK2 and bypass kinase Erk1/2 remain unaffected. Simultaneously, 7e induced cancer cell apoptosis in a concentration-dependent manner. Significantly, 20 mg/kg (i.p.) compound 7e suppressed the mouse HepG2 xenograft development in vivo without body weight loss, suggesting that it could be an effective antitumor agent.


Asunto(s)
Antineoplásicos , Melatonina , Humanos , Animales , Ratones , Melatonina/farmacología , Línea Celular Tumoral , Simulación del Acoplamiento Molecular , Antineoplásicos/química , Apoptosis , Proliferación Celular , Factor de Transcripción STAT3/metabolismo
19.
Food Microbiol ; 115: 104323, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37567618

RESUMEN

Lawn-harvest method uses a solid medium (e.g., tryptic soy agar, TSA) to produce bacterial lawns and is widely accepted for the culture of microorganisms in microbial studies of low-moisture foods (LMFs, foods with water activity less than 0.85). It produces desiccation-tolerant cells with higher D-values in LMFs; however, little is known about the molecular mechanisms underlying bacterial resistance. Salmonella enterica Enteritidis PT 30 (S. Enteritidis), the most pertinent pathogen in LMFs, was cultured in TSA and tryptic soy broth (TSB). Cells were harvested and inoculated on filter papers to assess their performance under a relative humidity of 32 ± 2%. Transcriptome analysis of cultured cells during long-term desiccation (24, 72, and 168 h) was conducted in TruSeq PE Cluster Kit (Illumina) by paired-end methods. Lawn-cultured S. Enteritidis cells have stronger survivability (only decreased by 0.78 ± 0.12 log after 130 d of storage) and heat tolerance (higher D/ß value) than those from the broth method. More desiccation genes of lawn-cultured cells were significantly upregulated from growth to long-term desiccation. Differentially expressed genes were the most enriched in the ribosome and sulfur metabolism pathways in the lawn- and broth-cultured groups. This study tracked the transcriptomic differences between two cultured groups in response to long-term desiccation stress and revealed some molecular mechanisms underlying their different suitability in microbial studies of LMFs.


Asunto(s)
Salmonella enterica , Salmonella enteritidis , Salmonella enteritidis/genética , Desecación , Microbiología de Alimentos , Salmonella enterica/genética , Perfilación de la Expresión Génica
20.
Genomics ; 114(2): 110294, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35134495

RESUMEN

Circular RNA (circRNA) plays vital roles in diverse cancer progression, including non-small cell lung cancer (NSCLC). Herein, the role of circ_0004015 in regulating the sensitivity of NSCLC to cisplatin (DDP) is revealed. The RNA expression of circ_0004015, microRNA-198 (miR-198) and kruppel like factor 8 (KLF8) was detected by quantitative real-time polymerase chain reaction. Protein expression was checked by western blot. The half maximal inhibitory concentration of DDP and cell proliferation were determined by cell counting kit-8 assay. Cell colony formation ability, migration, invasion and apoptosis were investigated by colony-forming assay, transwell assay and flow cytometry analysis, respectively. The effect of circ_0004015 knockdown on DDP sensitivity in vivo was demonstrated by mouse model assay. The interactions among circ_0004015, miR-198 and KLF8 were predicted by bioinformatics methods, and identified by mechanism assays. The expression of circ_0004015 and KLF8 was apparently upregulated, while miR-198 expression was downregulated in DDP-resistant NSCLC tissues and cells compared with control groups. Additionally, circ_0004015 silencing repressed DDP resistance, cell proliferation, migration and invasion, but induced cell apoptosis in DDP-resistant NSCLC cells. Circ_0004015 knockdown promoted the effect of DDP on tumor formation in vivo. Also, miR-198 inhibitors attenuated circ_0004015 depletion-mediated action though associating with circ_0004015. MiR-198 regulated DDP sensitivity and NSCLC progression by targeting KLF8. Furthermore, circ_0004015 modulated KLF8 expression through interaction with miR-198. Circ_0004015 conferred DDP resistance and promoted NSCLC progression by miR-198/KLF8 pathway, proving a potential target for studying DDP-mediated treatment of NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , Animales , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Proliferación Celular/genética , Cisplatino/farmacología , Resistencia a Antineoplásicos/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Ratones , Ratones Desnudos , MicroARNs/genética , MicroARNs/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA