Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Neurosci Res ; 95(12): 2469-2482, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28481020

RESUMEN

A-type K+ channels (IA channels) contribute to learning and memory mechanisms by regulating neuronal excitabilities in the CNS, and their expression level is targeted by Ca2+ influx via synaptic NMDA receptors (NMDARs) during long-term potentiation (LTP). However, it is not clear how local synaptic Ca2+ changes induce IA downregulation throughout the neuron, extending from the active synapse to the soma. In this study, we tested if two major receptors of endoplasmic reticulum (ER), ryanodine (RyRs), and IP3 (IP3 R) receptors, are involved in Ca2+ -mediated IA downregulation in cultured hippocampal neurons of rats. The downregulation of IA channels was induced by doubling the Ca2+ concentration in culture media (3.6 mM for 24 hrs) or treating with glycine (200 µM for 3 min) to induce chemical LTP (cLTP), and the changes in IA peaks were measured electrophysiologically by a whole-cell patch. We confirmed that Ca2+ or glycine treatment significantly reduced IA peaks and that their effects were abolished by blocking NMDARs or voltage-dependent Ca2+ channels (VDCCs). In this cellular processing, blocking RyRs (by ryanodine, 10 µM) but not IP3 Rs (by 2APB, 100 µM) completely abolished IA downregulation, and the LTP observed in hippocampal slices was more diminished by ryanodine rather than 2APB. Furthermore, blocking RyRs also reduced Ca2+ -mediated PKA activation, indicating that sequential signaling cascades, including the ER and PKA, are involved in regulating IA downregulation. These results strongly suggest a possibility that RyR contribution and mediated IA downregulation are required to regulate membrane excitability as well as synaptic plasticity in CA3-CA1 connections of the hippocampus. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Hipocampo/metabolismo , Neuronas/metabolismo , Canales de Potasio/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Regulación hacia Abajo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Potenciación a Largo Plazo/fisiología , Plasticidad Neuronal/fisiología , Ratas , Ratas Sprague-Dawley
2.
Korean J Physiol Pharmacol ; 21(2): 259-265, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28280420

RESUMEN

Excessive influx and the subsequent rapid cytosolic elevation of Ca2+ in neurons is the major cause to induce hyperexcitability and irreversible cell damage although it is an essential ion for cellular signalings. Therefore, most neurons exhibit several cellular mechanisms to homeostatically regulate cytosolic Ca2+ level in normal as well as pathological conditions. Delayed rectifier K+ channels (IDR channels) play a role to suppress membrane excitability by inducing K+ outflow in various conditions, indicating their potential role in preventing pathogenic conditions and cell damage under Ca2+-mediated excitotoxic conditions. In the present study, we electrophysiologically evaluated the response of IDR channels to hyperexcitable conditions induced by high Ca2+ pretreatment (3.6 mM, for 24 hours) in cultured hippocampal neurons. In results, high Ca2+-treatment significantly increased the amplitude of IDR without changes of gating kinetics. Nimodipine but not APV blocked Ca2+-induced IDR enhancement, confirming that the change of IDR might be targeted by Ca2+ influx through voltage-dependent Ca2+ channels (VDCCs) rather than NMDA receptors (NMDARs). The VDCC-mediated IDR enhancement was not affected by either Ca2+-induced Ca2+ release (CICR) or small conductance Ca2+-activated K+ channels (SK channels). Furthermore, PP2 but not H89 completely abolished IDR enhancement under high Ca2+ condition, indicating that the activation of Src family tyrosine kinases (SFKs) is required for Ca2+-mediated IDR enhancement. Thus, SFKs may be sensitive to excessive Ca2+ influx through VDCCs and enhance IDR to activate a neuroprotective mechanism against Ca2+-mediated hyperexcitability in neurons.

3.
Korean J Physiol Pharmacol ; 19(3): 219-28, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25954126

RESUMEN

Excessive microglial activation and subsequent neuroinflammation lead to synaptic loss and dysfunction as well as neuronal cell death, which are involved in the pathogenesis and progression of several neurodegenerative diseases. Thus, the regulation of microglial activation has been evaluated as effective therapeutic strategies. Although dieckol (DEK), one of the phlorotannins isolated from marine brown alga Ecklonia cava, has been previously reported to inhibit microglial activation, the molecular mechanism is still unclear. Therefore, we investigated here molecular mechanism of DEK via extracellular signal-regulated kinase (ERK), Akt and nicotinamide adenine dinuclelotide phosphate (NADPH) oxidase-mediated pathways. In addition, the neuroprotective mechanism of DEK was investigated in microglia-mediated neurotoxicity models such as neuron-microglia co-culture and microglial conditioned media system. Our results demonstrated that treatment of anti-oxidant DEK potently suppressed phosphorylation of ERK in lipopolysaccharide (LPS, 1 µg/ml)-stimulated BV-2 microglia. In addition, DEK markedly attenuated Akt phosphorylation and increased expression of gp91 (phox) , which is the catalytic component of NADPH oxidase complex responsible for microglial reactive oxygen species (ROS) generation. Finally, DEK significantly attenuated neuronal cell death that is induced by treatment of microglial conditioned media containing neurotoxic secretary molecules. These neuroprotective effects of DEK were also confirmed in a neuron-microglia co-culture system using enhanced green fluorescent protein (EGFP)-transfected B35 neuroblastoma cell line. Taken together, these results suggest that DEK suppresses excessive microglial activation and microglia-mediated neuronal cell death via downregulation of ERK, Akt and NADPH oxidase-mediated pathways.

4.
Korean J Physiol Pharmacol ; 18(2): 135-41, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24757375

RESUMEN

The downregulation of A-type K(+) channels (IA channels) accompanying enhanced somatic excitability can mediate epileptogenic conditions in mammalian central nervous system. As IA channels are dominantly targeted by dendritic and postsynaptic processings during synaptic plasticity, it is presumable that they may act as cellular linkers between synaptic responses and somatic processings under various excitable conditions. In the present study, we electrophysiologically tested if the downregulation of somatic IA channels was sensitive to synaptic activities in young hippocampal neurons. In primarily cultured hippocampal neurons (DIV 6~9), the peak of IA recorded by a whole-cell patch was significantly reduced by high KCl or exogenous glutamate treatment to enhance synaptic activities. However, the pretreatment of MK801 to block synaptic NMDA receptors abolished the glutamate-induced reduction of the IA peak, indicating the necessity of synaptic activation for the reduction of somatic IA. This was again confirmed by glycine treatment, showing a significant reduction of the somatic IA peak. Additionally, the gating property of IA channels was also sensitive to the activation of synaptic NMDA receptors, showing the hyperpolarizing shift in inactivation kinetics. These results suggest that synaptic LTP possibly potentiates somatic excitability via downregulating IA channels in expression and gating kinetics. The consequential changes of somatic excitability following the activity-dependent modulation of synaptic responses may be a series of processings for neuronal functions to determine outputs in memory mechanisms or pathogenic conditions.

5.
Phytother Res ; 27(4): 564-71, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22678994

RESUMEN

Mitochondrial membrane potential (∆Ψm ) contributes to determining a driving force for calcium to enter the mitochondria. It has been demonstrated that even a small mitochondrial depolarization is sufficient to prevent mitochondrial calcium overload and the subsequent apoptosis. Therefore, mild mitochondrial depolarization has been recently evaluated as a novel mechanism of neuroprotection via inhibiting neurotoxic mitochondrial calcium overload during neuronal insults. In the present study, using both real-time recording and flow cytometric analyses of ∆Ψm , we demonstrated that ethanolic peel extract of Citrus sunki Hort. ex Tanaka (CPE) and its active compounds are capable of inducing a mild mitochondrial depolarization. Polymethoxylated flavones such as nobiletin and tangeretin were found as the active compounds responsible for CPE effects on ∆Ψm . Neuronal viability was significantly increased in a dose-dependent manner by CPE treatment in H2 O2 -stimulated HT-22 cells as an in vitro neuronal insult model. CPE treatment significantly inhibited H2 O2 -induced apoptotic processes such as chromatin condensation, caspase 3 activation and anti-poly (ADP-ribose) polymerase (PARP) cleavage. CPE treatment significantly blocked mitochondrial calcium overload in H2 O2 -stimulated HT-22 neurons as indicated by rhod-2 acetoxymethyl ester. Taken together, our findings suggest that CPE and its active compounds may be considered as promising neuroprotective agents via inducing a mild mitochondrial depolarization.


Asunto(s)
Citrus/química , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Extractos Vegetales/farmacología , Apoptosis , Calcio/metabolismo , Línea Celular , Flavonas/farmacología , Citometría de Flujo , Frutas/química , Humanos , Peróxido de Hidrógeno/farmacología , Mitocondrias/efectos de los fármacos
6.
Front Cell Neurosci ; 17: 1153970, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37519632

RESUMEN

In this study, we introduce the importance of elevated membrane potentials (MPs) in the prefrontal cortex (PFC) compared to that in the posterior parietal cortex (PPC), based on new observations of different MP levels in these areas. Through experimental data and spiking neural network modeling, we investigated a possible mechanism of the elevated membrane potential in the PFC and how these physiological differences affect neural network dynamics and cognitive functions in the PPC and PFC. Our findings indicate that NMDA receptors may be a main contributor to the elevated MP in the PFC region and highlight the potential of using a modeling toolkit to investigate the means by which changes in synaptic properties can affect neural dynamics and potentiate desirable cognitive functions through population activities in the corresponding brain regions.

7.
Adv Mater ; 35(13): e2208747, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36640750

RESUMEN

Functional restoration by the re-establishment of cellular or neural connections remains a major challenge in targeted cell therapy and regenerative medicine. Recent advances in magnetically powered microrobots have shown potential for use in controlled and targeted cell therapy. In this study, a magnetic neurospheroid (Mag-Neurobot) that can form both structural and functional connections with an organotypic hippocampal slice (OHS) is assessed using an ex vivo model as a bridge toward in vivo application. The Mag-Neurobot consists of hippocampal neurons and superparamagnetic nanoparticles (SPIONs); it is precisely and skillfully manipulated by an external magnetic field. Furthermore, the results of patch-clamp recordings of hippocampal neurons indicate that neither the neuronal excitabilities nor the synaptic functions of SPION-loaded cells are significantly affected. Analysis of neural activity propagation using high-density multi-electrode arrays shows that the delivered Mag-Neurobot is functionally connected with the OHS. The applications of this study include functional verification for targeted cell delivery through the characterization of novel synaptic connections and the functionalities of transported and transplanted cells. The success of the Mag-Neurobot opens up new avenues of research and application; it offers a test platform for functional neural connections and neural regenerative processes through cell transplantation.


Asunto(s)
Nanopartículas de Magnetita , Neuronas , Neuronas/fisiología , Hipocampo/fisiología , Medicina Regenerativa , Tratamiento Basado en Trasplante de Células y Tejidos , Campos Magnéticos , Nanopartículas de Magnetita/química
8.
Mol Brain ; 14(1): 147, 2021 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-34556177

RESUMEN

Hypoxia typically accompanies acute inflammatory responses in patients and animal models. However, a limited number of studies have examined the effect of hypoxia in combination with inflammation (Hypo-Inf) on neural function. We previously reported that neuronal excitability in hippocampal CA1 neurons decreased during hypoxia and greatly rebounded upon reoxygenation. We attributed this altered excitability mainly to the dynamic regulation of hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels and input resistance. However, the molecular mechanisms underlying input resistance changes by Hypo-Inf and reperfusion remained unclear. In the present study, we found that a change in the density of the delayed rectifier potassium current (IDR) can explain the input resistance variability. Furthermore, voltage-dependent inactivation of A-type potassium (IA) channels shifted in the depolarizing direction during Hypo-Inf and reverted to normal upon reperfusion without a significant alteration in the maximum current density. Our results indicate that changes in the input resistance, and consequently excitability, caused by Hypo-Inf and reperfusion are at least partially regulated by the availability and voltage dependence of KV channels. Moreover, these results suggest that selective KV channel modulators can be used as potential neuroprotective drugs to minimize hypoxia- and reperfusion-induced neuronal damage.


Asunto(s)
Región CA1 Hipocampal/fisiopatología , Hipoxia de la Célula/fisiología , Canales de Potasio de Tipo Rectificador Tardío/fisiología , Daño por Reperfusión/fisiopatología , Potenciales de Acción/fisiología , Animales , Medios de Cultivo/farmacología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/fisiología , Técnicas In Vitro , Inflamación , Cinética , Potenciales de la Membrana/fisiología , Fármacos Neuroprotectores/farmacología , Técnicas de Placa-Clamp , Ratas , Reperfusión , Tetrodotoxina/farmacología
9.
Neurotox Res ; 38(4): 900-913, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32910305

RESUMEN

The venom of jellyfish triggers severe dermal pain along with inflammation and tissue necrosis, and occasionally, induces internal organ dysfunction. However, the basic mechanisms underlying its cytotoxic effects are still unknown. Here, we report one of the mechanisms involved in peripheral pain modulation associated with inflammatory and neurotoxic oxidative signaling in rats using the venom of jellyfish, Chrysaora pacifica (CpV). This jellyfish is identified by brown tentacles carrying nematocysts filled with cytotoxic venom that induces severe pain, pruritus, tentacle marks, and blisters. The subcutaneous injection of CpV into rat forepaws in behavioral tests triggered nociceptive response with a decreased threshold for mechanical pain perception. These responses lasted up to 48 h and were completely blocked by verapamil and TTA-P2, T-type Ca2+ channel blockers, or HC030031, a transient receptor potential cation ankyrin 1 (TRPA1) channel blocker, while another Ca2+ channel blocker, nimodipine, was ineffective. Also, treatment with Ca2+ chelators (EGTA and BaptaAM) significantly alleviated the CpV-induced pain response. These results indicate that CpV-induced pain modulation may require both Ca2+ influx through the T-type Ca2+ channels and activation of TRPA1 channels. Furthermore, CpV induced Ca2+-mediated oxidative neurotoxicity in the dorsal root ganglion (DRG) and cortical neurons dissociated from rats, resulting in decreased neuronal viability and increased intracellular levels of ROS. Taken together, CpV may activate Ca2+-mediated oxidative signaling to produce excessive ROS acting as an endogenous agonist of TRPA1 channels in the peripheral terminals of the primary afferent neurons, resulting in persistent inflammatory pain. These findings provide strong evidence supporting the therapeutic effectiveness of blocking oxidative signaling against pain and cytotoxicity induced by jellyfish venom.


Asunto(s)
Calcio/metabolismo , Venenos de Cnidarios/toxicidad , Neuralgia/inducido químicamente , Neuralgia/metabolismo , Dimensión del Dolor/métodos , Canal Catiónico TRPA1/metabolismo , Animales , Venenos de Cnidarios/administración & dosificación , Venenos de Cnidarios/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Inyecciones Subcutáneas , Masculino , Ratas , Ratas Sprague-Dawley
10.
Neuropharmacology ; 138: 20-31, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29775678

RESUMEN

Although a number of experimental and clinical studies have shown that hypoxia typically accompanies acute inflammatory responses, the combinatorial effect of the two insults on basic neural function has not been thoroughly investigated. Previous studies have predominantly suggested that hypoxia reduces network activity; however, several studies suggest the opposite effect. Of note, inflammation is known to increase neural activity. In the current study, we examined the effects of limited oxygen in combination with an inflammatory stimulus, as well as the effects of reoxygenation, on synaptic transmission and excitability. We observed a significant reduction of both synaptic transmission and excitability when hypoxia and inflammation occurred in combination, whereas reoxygenation caused hyperexcitability of neurons. Further, we found that the observed reduction in synaptic transmission was due to compromised presynaptic release efficiency based on an adenosine-receptor-dependent increase in synaptic facilitation. Excitability changes in both directions were attributable to dynamic regulation of the hyperpolarization-activated cation current (Ih) and to changes in the input resistance and the voltage difference between resting membrane potential and action potential threshold. We found that zatebradine, an Ih current inhibitor, reduced the fluctuation in excitability, suggesting that it may have potential as a drug to ameliorate reperfusion brain injury.


Asunto(s)
Región CA1 Hipocampal/fisiopatología , Hipoxia/fisiopatología , Inflamación/fisiopatología , Neuronas/fisiología , Transmisión Sináptica/fisiología , Animales , Benzazepinas/farmacología , Región CA1 Hipocampal/efectos de los fármacos , Fármacos del Sistema Nervioso Central/farmacología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/antagonistas & inhibidores , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Hipoxia/complicaciones , Hipoxia/tratamiento farmacológico , Inflamación/complicaciones , Inflamación/tratamiento farmacológico , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Neuronas/efectos de los fármacos , Oxígeno/metabolismo , Ratas Sprague-Dawley , Sinapsis/efectos de los fármacos , Sinapsis/fisiología , Transmisión Sináptica/efectos de los fármacos , Técnicas de Cultivo de Tejidos
11.
Neurosci Bull ; 30(3): 505-14, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24526657

RESUMEN

In the mammalian brain, information encoding and storage have been explained by revealing the cellular and molecular mechanisms of synaptic plasticity at various levels in the central nervous system, including the hippocampus and the cerebral cortices. The modulatory mechanisms of synaptic excitability that are correlated with neuronal tasks are fundamental factors for synaptic plasticity, and they are dependent on intracellular Ca(2+)-mediated signaling. In the present review, the A-type K(+) (IA) channel, one of the voltage-dependent cation channels, is considered as a key player in the modulation of Ca(2+) influx through synaptic NMDA receptors and their correlated signaling pathways. The cellular functions of IA channels indicate that they possibly play as integral parts of synaptic and somatic complexes, completing the initiation and stabilization of memory.


Asunto(s)
Hipocampo/citología , Proteínas de Interacción con los Canales Kv/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Sinapsis/metabolismo , Animales , Neuronas/citología
12.
Complement Ther Med ; 22(3): 456-62, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24906585

RESUMEN

OBJECTIVES: Aromatherapy massage is commonly used for the stress management of healthy individuals, and also has been often employed as a therapeutic use for pain control and alleviating psychological distress, such as anxiety and depression, in oncological palliative care patients. However, the exact biological basis of aromatherapy massage is poorly understood. Therefore, we evaluated here the effects of aromatherapy massage interventions on multiple neurobiological indices such as quantitative psychological assessments, electroencephalogram (EEG) power spectrum pattern, salivary cortisol and plasma brain-derived neurotrophic factor (BDNF) levels. DESIGN: A control group without treatment (n = 12) and aromatherapy massage group (n = 13) were randomly recruited. They were all females whose children were diagnosed as attention deficit hyperactivity disorder and followed up in the Department of Psychiatry, Jeju National University Hospital. Participants were treated with aromatherapy massage for 40 min twice per week for 4 weeks (8 interventions). RESULTS: A 4-week-aromatherapy massage program significantly improved all psychological assessment scores in the Stat-Trait Anxiety Index, Beck Depression Inventory and Short Form of Psychosocial Well-being Index. Interestingly, plasma BDNF levels were significantly increased after a 4 week-aromatherapy massage program. Alpha-brain wave activities were significantly enhanced and delta wave activities were markedly reduced following the one-time aromatherapy massage treatment, as shown in the meditation and neurofeedback training. In addition, salivary cortisol levels were significantly reduced following the one-time aromatherapy massage treatment. CONCLUSIONS: These results suggest that aromatherapy massage could exert significant influences on multiple neurobiological indices such as EEG pattern, salivary cortisol and plasma BDNF levels as well as psychological assessments.


Asunto(s)
Aromaterapia , Ondas Encefálicas/fisiología , Factor Neurotrófico Derivado del Encéfalo/sangre , Hidrocortisona/análisis , Masaje , Estrés Psicológico/terapia , Adulto , Electroencefalografía , Femenino , Humanos , Persona de Mediana Edad , Saliva/química
13.
Brain Res Bull ; 91: 14-20, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23219935

RESUMEN

Immature hippocampal neurons with high input resistances (R(in)) are vulnerable to hyperexcitable or epileptogenic conditions. This phenomenon has been suggested to explain the neuroprotective roles of hyperpolarization-activated cation channels (I(h) channels) to regulate membrane R(in). In the present study, we tried to electrophysiologically clarify the relationship between membrane R(in) and I(h) channels and determine the neuroprotective roles of these channels in development. The CA1 neurons from rats (within 3 postnatal weeks) were classified into two groups based on the onset time (shorter or longer than 20 ms) to fire the first action potential (AP) in response to a current injection (100 pA, 800 ms). Neurons with a shorter onset time (Short-OsT), exhibited higher R(in), while neurons with longer onset times (Long-OsT) revealed lower R(in). Unexpectedly, Short-OsT neurons with higher R(in) exhibited larger amplitudes of I(h) compared with Long-OsT neurons. Furthermore, the application of temporal depolarization stimulus (TDS, -14 mV holding for 150 s) significantly enhanced suprathreshold excitabilities of repetitive APs in Long-OsT but not Short-OsT neurons, suggesting a protective role of I(h) channels under high R(in) conditions. In the presence of the specific hyperpolarization-activated cyclic nucleotide-gated (HCN) channel blocker ZD7288, TDS also enhanced the excitability of Short-OsT neurons, suggesting that young CA1 neurons regulate I(h) channel expression for neuroprotective modulation against epileptogenic conditions.


Asunto(s)
Canales Iónicos/metabolismo , Células Piramidales/metabolismo , Potenciales de Acción/fisiología , Animales , Región CA1 Hipocampal/metabolismo , Masculino , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA