Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Plant Physiol ; 195(3): 2339-2353, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38506490

RESUMEN

Iron (Fe) distribution and reutilization are crucial for maintaining Fe homeostasis in plants. Here, we demonstrate that the tomato (Solanum lycopersicum) Colorless nonripening (Cnr) epimutant exhibits increased Fe retention in cell wall pectin due to an increase in pectin methylesterase (PME) activity. This ultimately leads to Fe deficiency responses even under Fe-sufficient conditions when compared to the wild type (WT). Whole-genome bisulfite sequencing revealed that modifications to cell wall-related genes, especially CG hypermethylation in the intron region of PECTIN METHYLESTERASE53 (SlPME53), are involved in the Cnr response to Fe deficiency. When this intron hypermethylation of SlPME53 was artificially induced in WT, we found that elevated SlPME53 expression was accompanied by increased PME activity and increased pectin-Fe retention. The manipulation of SlPME53, either through overexpression in WT or knockdown in Cnr, influenced levels of pectin methylesterification and accumulation of apoplast Fe in roots. Moreover, CG hypermethylation mediated by METHYLTRANSFERASE1 (SlMET1) increased SlPME53 transcript abundance, resulting in greater PME activity and higher Fe retention in cell wall pectin. Therefore, we conclude that the Cnr mutation epigenetically modulates SlPME53 expression by SlMET1-mediated CG hypermethylation, and thus the capacity of the apoplastic Fe pool, creating opportunities for genetic improvement of crop mineral nutrition.


Asunto(s)
Hidrolasas de Éster Carboxílico , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Hierro , Raíces de Plantas , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/enzimología , Hidrolasas de Éster Carboxílico/metabolismo , Hidrolasas de Éster Carboxílico/genética , Hierro/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Metilación de ADN/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pared Celular/metabolismo , Pectinas/metabolismo
2.
Biochem Biophys Res Commun ; 524(3): 689-695, 2020 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-32033747

RESUMEN

Dehydration-responsive element binding (DREB) transcription factors activate the expression of downstream functional genes in combination with a dehydration-responsive element (DRE), and thereby improve the resistance of plants to abiotic stresses such as heat. However, the upstream regulatory mechanism of DREB genes under heat is unclear. A DREBA4 subfamily transcription factor (SlDREBA4), which is heat-responsive and improves heat resistance, was isolated from Solanum lycopersicum 'Microtom'. In this study, promoter truncation experiments were performed to verify changes in ß-glucuronidase (GUS) enzyme activity and GUS gene expression levels in transgenic plants with different lengths of promoter fragments under heat and to identify specific regions in the promoter that respond to heat. Our results showed that the GUS reporter gene was constitutively expressed in tissues of the full-length promoter transgenic 'Microtom' plants, with higher expression in conducting tissues of root, stem, and leaf, as well as sepals of flowers and fruits. Under heat treatment, GUS enzyme activity and GUS gene expression levels in tissues of the full-length promoter transgenic plants increased. Promoter deletion analysis identified two positive regulatory regions (-1095 to -730 bp and -162 to -38 bp) responsible for the promoter's response to heat. These results indicated that the heat shock element (HSE) and MYC recognition sequences may cooperate in heat-induced activation of SlDREBA4 promoter.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Calor , Proteínas de Plantas/genética , Regiones Promotoras Genéticas , Solanum lycopersicum/genética , Secuencia de Bases , Glucuronidasa/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Eliminación de Secuencia/genética
3.
Mitochondrial DNA B Resour ; 9(4): 557-562, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38686317

RESUMEN

Keteleeria evelyniana Mast var. pendula Hsüeh, a typical plant species of extremely small population, is faced to be endangered. The complete chloroplast (cp) genome of K. evelyniana var. pendula has been assembled and annotated for the first time in this study. The complete genome in length was found to be 117,139 bp. The genome annotation revealed a total of 118 genes, including 34 transfer RNA (tRNA) genes, 4 ribosomal RNA (rRNA) genes, and 80 protein-coding genes. The maximum-likelihood phylogenetic tree supported that K. evelyniana var. pendula, K. fortune, K. evelyniana, and K. davidiana are clustered in one branch. This complete chloroplast genome helped us to understand the evolution of K. evelyniana var. pendula. These results laid the foundation for future studies on the conservation of this species.

4.
Plant Physiol Biochem ; 215: 109008, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39226760

RESUMEN

Transcription factors (TFs) are crucial for regulating fruit ripening in tomato (Solanum lycopersicum). The GRAS (GAI, RGA, and SCR) TFs are involved in various physiological processes, but their role in fruit ripening has seldom been reported. We have previously identified a gene encoding GRAS protein named SlFSR (Fruit Shelf-life Regulator), which is implicated in fruit ripening by regulating cell wall metabolism; however, the underlying mechanism remains unclear. Here, we demonstrate that SlFSR proteins are localized to the nucleus, where they could bind to specific DNA sequences. SlFSR acts downstream of the master ripening regulator RIN and could collaborate with RIN to control the ripening process by regulating expression of ethylene biosynthesis genes. In SlFSR-CR (CRISPR/Cas9) mutants, the initiation of fruit ripening was not affected but the reduced ethylene production and a delayed coloring process occurred. RNA-sequencing (RNA-seq) and promoter analysis reveal that SlFSR directly binds to the promoters of two key ethylene biosynthesis genes (SlACO1 and SlACO3) and activates their expression. However, SlFSR-CR fruits displayed a significant down-regulation of key rate-limiting genes (SlDXS1 and SlGGPPS2) in the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway, which may account for the impaired lycopene synthesis. Altogether, we propose that SlFSR positively regulates ethylene biosynthesis and lycopene accumulation, providing valuable insights into the molecular mechanisms underlying fruit ripening.


Asunto(s)
Etilenos , Frutas , Regulación de la Expresión Génica de las Plantas , Licopeno , Proteínas de Plantas , Solanum lycopersicum , Solanum lycopersicum/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Etilenos/metabolismo , Etilenos/biosíntesis , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Frutas/metabolismo , Frutas/genética , Frutas/crecimiento & desarrollo , Licopeno/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
5.
Mitochondrial DNA B Resour ; 7(2): 406-408, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35224199

RESUMEN

Rubus ellipticus Sm. var. obcordatus Focke is an important species in the phylogeny and evolution of genus Rubus L. in the family Rosaceae. Its chloroplast genome, as reported in this study, is 155,656 bp in size, and it has an average GC content of 37.14%. The chloroplast genome showed a typical quadripartite structure comprising a large single copy (LSC) region (85,388 bp) and a small single copy (SSC) region (18,730 bp), which were separated by a pair of inverted repeats (IRs, 25,769 bp). In total, this plastome was found to contain 129 different genes, including 85 protein-coding genes, 36 tRNA genes, and eight rRNA genes. The completed chloroplast genome of R. ellipticus var. obcordatus will set a new insight into clarifying the phylogeny and genomic studies in genus Rubus of the family Rosaceae.

6.
Mitochondrial DNA B Resour ; 6(10): 3033-3035, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34589584

RESUMEN

The figleaf gourd (Cucurbita ficifolia Bouché), is a member of the Cucurbitaceae. Figleaf gourd genotypes are exclusively used as a rootstock for cucumber owing to their high physiological compatibility with cucumber. In this study, the complete chloroplast (cp) genome of C. ficifolia was assembled. The cp genome of C. ficifolia was 157,631 bp in length, it consists of a pair of inverted repeats (IRa and IRb) regions (25,638 bp) separated by the large single-copy (LSC, 88,211 bp) and small single-copy (SSC, 18,144 bp) regions. The cp genome encodes 111 unique genes, including 80 protein-coding genes, 27 transfer RNA genes, and four ribosomal RNA genes. The overall GC content of C. ficifolia cp genome was 37.2%. The phylogenetic tree of Cucurbitaceae showed that C. ficifolia was clustered into genus Cucurbita and the bootstrap value is 100%.

7.
Mitochondrial DNA B Resour ; 6(3): 1276-1278, 2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33829107

RESUMEN

Pterospermum menglunense is the endangered plant species of the genus Pterospermum in the family Sterculiaceae. In the study, the complete genome was 162,421bp in length, including of two inverted repeats (IRA and IRB, 25,572 bp), separated by a large single-copy region (LSC, 90,754 bp) and a small single-copy region (SSC, 20,523 bp). The genome annotation reveals a total of 132 genes, including 37 transfer RNA (tRNA) genes, 8 ribosomal RNA (rRNA) genes, and 87 protein-coding (PCG) genes. The phylogenetic tree showed P. menglunense is closely related to Pterospermum kingtungense.

8.
World J Gastroenterol ; 21(26): 8081-8, 2015 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-26185379

RESUMEN

AIM: To evaluate preventative effects of ischemic preconditioning (IP) in a rat model of intestinal injury induced by ischemia-reperfusion (IR). METHODS: Male Sprague-Dawley rats (250-300 g) were fasted for 24 h with free access to water prior to the operation. Eighteen rats were randomly divided into three experimental groups: S group (n = 6), rats were subjected to isolation of the superior mesenteric artery (SMA) for 40 min, then the abdomen was closed; IR group (n = 6), rats were subjected to clamping the SMA 40 min, and the abdomen was closed followed by a 4-h reperfusion; IP group (n = 6) rats underwent three cycles of 5 min ischemia and 5 min reperfusion, then clamping of the SMA for 40 min, then the abdomen was closed and a 4-h reperfusion followed. All animals were euthanized by barbiturate overdose (150 mg/kg pentobarbital sodium, i.v.) for tissue collection, and the SMA was isolated via median abdominal incision. Intestinal histologic injury was observed. Malondialdehyde (MDA), myeloperoxidase (MPO) and tumor necrosis factor (TNF)-α concentrations in intestinal tissue were measured. Intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 expression, as well as nuclear factor (NF)-κB activity and expression in intestinal tissue were also determined. RESULTS: Compared with the IR group, IP reduced IR-induced histologic injury of the intestine in rats (2.00 ± 0.71 vs 3.60 ± 0.84, P < 0.05). IP significantly inhibited the increase in MDA content (5.6 ± 0.15 µmol/L vs 6.84 ± 0.18 µmol/L, P < 0.01), MPO activity (0.13 ± 0.01 U/L vs 0.24 ± 0.01 U/L, P < 0.01), and TNF-α levels (7.79 ± 2.35 pg/mL vs 10.87 ± 2.48 pg/mL, P < 0.05) in the intestinal tissue of rats. IP also markedly ameliorated the increase in ICAM-1 (204.67 ± 53.27 vs 353.33 ± 45.19, P < 0.05) and VCAM-1 (256.67 ± 58.59 vs 377.33 ± 41.42, P < 0.05) protein expression in the intestinal tissues. Additionally, IP remarkably decreased NF-κB activity (0.48 ± 0.16 vs 0.76 ± 0.22, P < 0.05) and protein expression (320.23 ± 38.16 vs 520.76 ± 40.53, P < 0.01) in rat intestinal tissue. CONCLUSION: IP may protect against IR-induced intestinal injury by attenuation of the neutrophil-endothelial adhesion cascade via reducing ICAM-1 and VCAM-1 expression and TNF-α-induced NF-κB signaling pathway activity.


Asunto(s)
Intestinos/irrigación sanguínea , Precondicionamiento Isquémico/métodos , Isquemia Mesentérica/prevención & control , Daño por Reperfusión/prevención & control , Animales , Biomarcadores/metabolismo , Constricción , Modelos Animales de Enfermedad , Molécula 1 de Adhesión Intercelular/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/patología , Masculino , Malondialdehído/metabolismo , Arteria Mesentérica Superior/fisiopatología , Isquemia Mesentérica/metabolismo , Isquemia Mesentérica/patología , Isquemia Mesentérica/fisiopatología , FN-kappa B/metabolismo , Ratas Sprague-Dawley , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Daño por Reperfusión/fisiopatología , Transducción de Señal , Circulación Esplácnica , Factores de Tiempo , Factor de Necrosis Tumoral alfa/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA