Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
FASEB J ; 31(3): 1130-1140, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27965321

RESUMEN

Dissociation-induced apoptosis is a striking phenomenon in human embryonic stem cells (hESCs), but not in naive mouse ESCs. Rho-associated kinase-dependent actin-myosin hyperactivation is an underlying mechanism that triggers apoptosis in dissociated hESCs; however, in this study, we show that the Ink4A-ARF-mediated senescence pathway is another mechanism to cause apoptosis in individualized hESCs. We show that P16INK4A and P14ARF are immediately induced in hESCs upon dissociation, but not in mouse ESCs. Overexpression of BMI1, a suppressor for Ink4A-ARF, greatly promotes survival and cloning efficiency of individualized hESCs mechanistically via direct binding the H3K27me3-marked Ink4A-ARF locus. Forced expression of BMI1 in hESCs does not reduce the actin-myosin activation that is triggered by dissociation, which indicates it is an independent pathway for hESC survival. Furthermore, dual inhibition of both Ink4A-ARF and actin-myosin hyperactivation enables successful passaging of hESCs via gelatin, a nonbioactive matrix. In sum, we provide an additional mechanism that underlies cell death in individualized hESCs that might help to fully understand the differential cell characteristics between naive and primed ESCs.-Wang, W., Zhu, Y., Huang, K., Shan, Y., Du, J., Dong, X., Ma, P., Wu, P., Zhang, J., Huang, W., Zhang, T., Liao, B., Yao, D., Pan, G., Liu, J. Suppressing P16Ink4a and P14ARF pathways overcomes apoptosis in individualized human embryonic stem cells.


Asunto(s)
Apoptosis , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Células Madre Embrionarias/metabolismo , Proteína p14ARF Supresora de Tumor/metabolismo , Actinas/metabolismo , Animales , Línea Celular , Senescencia Celular , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Células Madre Embrionarias/fisiología , Humanos , Ratones , Miosinas/metabolismo , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 1/metabolismo , Proteína p14ARF Supresora de Tumor/genética
2.
Food Chem ; 456: 139963, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-38896968

RESUMEN

Batch coupled enzymatic hydrolysis and membrane separation mode (BCEH-MSM) is efficient in preparing active peptides due to enzyme being more purposeful in hydrolysing macromolecular. Therefore, BCEH-MSM probably could be an alternative option to the traditional enzymatic hydrolysis and offline membrane separation mode (TEH-OMSM). This work aimed to explore the potential of BCEH-MSM in enhancing the enzymatic hydrolysis (EH) efficiency and the umami of the enzymatic hydrolysate. The EH efficiency was valuated based on product yields. Amino acid analyzer and HPLC were used to analyze tasting compounds. Electronic-tongue was used to determine umami intensity. The results showed that BCEH-MSM exhibited superior EH efficiency and higher umami intensity compared to TEH-OMSM. LC-MS/MS was used to identify peptides with higher umami intensity in the enzymatic hydrolysate. LGEETF, VNFDGEI, and QLSELLRAGSSPNL had umami profile verified by electronic-tongue. Molecular docking further showed that crucial amino acid residues involved in the binding to T1R1/T1R3 was His145.


Asunto(s)
Pollos , Péptidos , Gusto , Animales , Hidrólisis , Péptidos/química , Péptidos/aislamiento & purificación , Espectrometría de Masas en Tándem , Humanos , Carne/análisis , Simulación del Acoplamiento Molecular , Aromatizantes/química , Hidrolisados de Proteína/química , Biocatálisis , Cromatografía Líquida de Alta Presión
3.
Food Chem ; 453: 139622, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-38761729

RESUMEN

For health and safety reasons, the search for green, healthy, and low-calorie sweeteners with good taste has become the demand of many consumers. Furthermore, the need for sugar substitutes of natural origin has increased dramatically. In this review, we briefly discussed the safety and health benefits of stevia sweeteners and enumerated some examples of physiological functions of steviol glycosides (SGs), such as anti-inflammatory, anti-obesity, antihypertensive, anti-diabetes, and anticaries, citing various evidence related to their application in the food industry. The latest advances in emerging technologies for extracting and purifying SGs and the process variables and operational strategies were discussed. The impact of the extraction methods and their comparison against the conventional techniques have also been demonstrated. These technologies use minimal energy solvents and simplify subsequent purification stages, making viable alternatives suitable for a possible industrial application. Furthermore, we also elucidated the potential for advancing and applying the natural sweeteners SGs.


Asunto(s)
Diterpenos de Tipo Kaurano , Extractos Vegetales , Stevia , Edulcorantes , Stevia/química , Diterpenos de Tipo Kaurano/aislamiento & purificación , Diterpenos de Tipo Kaurano/química , Edulcorantes/aislamiento & purificación , Edulcorantes/química , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Humanos , Glucósidos/aislamiento & purificación , Glucósidos/química , Animales , Glicósidos/aislamiento & purificación , Glicósidos/química
4.
Cell Metab ; 36(7): 1586-1597.e7, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38703762

RESUMEN

The mitochondrial genome transcribes 13 mRNAs coding for well-known proteins essential for oxidative phosphorylation. We demonstrate here that cytochrome b (CYTB), the only mitochondrial-DNA-encoded transcript among complex III, also encodes an unrecognized 187-amino-acid-long protein, CYTB-187AA, using the standard genetic code of cytosolic ribosomes rather than the mitochondrial genetic code. After validating the existence of this mtDNA-encoded protein arising from cytosolic translation (mPACT) using mass spectrometry and antibodies, we show that CYTB-187AA is mainly localized in the mitochondrial matrix and promotes the pluripotent state in primed-to-naive transition by interacting with solute carrier family 25 member 3 (SLC25A3) to modulate ATP production. We further generated a transgenic knockin mouse model of CYTB-187AA silencing and found that reduction of CYTB-187AA impairs females' fertility by decreasing the number of ovarian follicles. For the first time, we uncovered the novel mPACT pattern of a mitochondrial mRNA and demonstrated the physiological function of this 14th protein encoded by mtDNA.


Asunto(s)
Citocromos b , Animales , Citocromos b/genética , Citocromos b/metabolismo , Ratones , Femenino , Ratones Transgénicos , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Humanos , Ratones Endogámicos C57BL , Genes Mitocondriales , ARN Mensajero/metabolismo , ARN Mensajero/genética , Masculino
5.
Sci China Life Sci ; 65(2): 227-235, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34480695

RESUMEN

Mitochondria, double-membrane organelles, are known to participate in a variety of metabolic and signal transduction pathways. The intermembrane space (IMS) of mitochondria is proposed to subject to multiple damages emanating from the respiratory chain. The optic atrophy 1 (OPA1), an important protein for mitochondrial fusion, is cleaved into soluble short-form (S-OPA1) under stresses. Here we report that S-OPA1 could function as a molecular chaperone in IMS. We purified the S-OPA1 (amino acid sequence after OPA1 isoform 5 S1 site) protein and showed it protected substrate proteins from thermally and chemically induced aggregation and strengthened the thermotolerance of Escherichia coli (E. coli). We also showed that S-OPA1 conferred thermotolerance on IMS proteins, e.g., neurolysin. The chaperone activity of S-OPA1 may be required for maintaining IMS homeostasis in mitochondria.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Membranas Mitocondriales/metabolismo , Chaperonas Moleculares/metabolismo , Escherichia coli/fisiología , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/genética , Homeostasis , Metaloendopeptidasas/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Isoformas de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termotolerancia
6.
Chem Sci ; 8(1): 631-640, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29780446

RESUMEN

Cancer cell metabolism is reprogrammed to sustain the high metabolic demands of cell proliferation. Recently, emerging studies have shown that mitochondrial metabolism is a potential target for cancer therapy. Herein, four mitochondria-targeted phosphorescent cyclometalated iridium(iii) complexes have been designed and synthesized. Complexes 2 and 4, containing reactive chloromethyl groups for mitochondrial fixation, show much higher cytotoxicity than complexes 1 and 3 without mitochondria-immobilization properties against the cancer cells screened. Further studies show that complexes 2 and 4 induce caspase-dependent apoptosis through mitochondrial damage, cellular ATP depletion, mitochondrial respiration inhibition and reactive oxygen species (ROS) elevation. The phosphorescence of complexes 2 and 4 can be utilized to monitor the perinuclear clustering of mitochondria in real time, which provides a reliable and convenient method for in situ monitoring of the therapeutic effect and gives hints for the investigation of anticancer mechanisms. Genome-wide transcriptional analysis shows that complex 2 exerts its anticancer activity through metabolism repression and multiple cell death signalling pathways. Our work provides a strategy for the construction of highly effective anticancer agents targeting mitochondrial metabolism through rational modification of phosphorescent iridium complexes.

7.
Cell Metab ; 23(1): 220-6, 2016 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-26549484

RESUMEN

The mechanisms of somatic cell reprogramming have been revealed at multiple levels. However, the lack of tools to monitor different reactive oxygen species (ROS) has left their distinct signals and roles in reprogramming unknown. We hypothesized that mitochondrial flashes (mitoflashes), recently identified spontaneous bursts of mitochondrial superoxide signaling, play a role in reprogramming. Here we show that the frequency of mitoflashes transiently increases, accompanied by flash amplitude reduction, during the early stages of reprogramming. This transient activation of mitoflashes at the early stage enhances reprogramming, whereas sustained activation impairs reprogramming. The reprogramming-promoting function of mitoflashes occurs via the upregulation of Nanog expression that is associated with decreases in the methylation status of the Nanog promoter through Tet2 occupancy. Together our findings provide a previously unknown role for superoxide signaling mediated epigenetic regulation in cell fate determination.


Asunto(s)
Reprogramación Celular , Proteínas de Homeodominio/metabolismo , Mitocondrias/fisiología , Animales , Células Cultivadas , Metilación de ADN , Proteínas de Unión al ADN/metabolismo , Dioxigenasas , Epigénesis Genética , Fibroblastos/fisiología , Proteínas de Homeodominio/genética , Humanos , Ratones , Proteína Homeótica Nanog , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal , Superóxidos/metabolismo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA