Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(40): e2305125120, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37748051

RESUMEN

Conductive metal-organic frameworks (cMOFs) manifest great potential in modern electrical devices due to their porous nature and the ability to conduct charges in a regular network. cMOFs applied in electrical devices normally hybridize with other materials, especially a substrate. Therefore, the precise control of the interface between cMOF and a substrate is particularly crucial. However, the unexplored interface chemistry of cMOFs makes the controlled synthesis and advanced characterization of high-quality thin films, particularly challenging. Herein, we report the development of a simplified synthesis method to grow "face-on" and "edge-on" cMOF nanofilms on substrates, and the establishment of operando characterization methodology using atomic force microscopy and X-ray, thereby demonstrating the relationship between the soft structure of surface-mounted oriented networks and their characteristic conductive functions. As a result, crystallinity of cMOF nanofilms with a thickness down to a few nanometers is obtained, the possible growth mechanisms are proposed, and the interesting anisotropic softness-dependent conducting properties (over 2 orders of magnitude change) of the cMOF are also illustrated.

2.
Angew Chem Int Ed Engl ; 63(16): e202401679, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38389160

RESUMEN

Electrically conductive metal-organic frameworks (cMOFs) have garnered significant attention in materials science due to their potential applications in modern electrical devices. However, achieving effective modulation of their conductivity has proven to be a major challenge. In this study, we have successfully prepared cMOFs with high conductivity by incorporating electron-donating fused thiophen rings in the frameworks and extending their π-conjugated systems through ring-closing reactions. The conductivity of cMOFs can be precisely modulated ranging from 10-3 to 102 S m-1 by regulating their dimensions and topologies. Furthermore, leveraging the inherent tunable electrical properties based on topology, we successfully demonstrated the potential of these materials as chemiresistive gas sensors with an outstanding response toward 100 ppm NH3 at room temperature. This work not only provides valuable insights into the design of functional cMOFs with different topologies but also enriches the cMOF family with exceptional conductivity properties.

3.
Angew Chem Int Ed Engl ; 63(21): e202401005, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38584128

RESUMEN

Developing highly stable porous coordination polymers (PCPs) with integrated electrical conductivity is crucial for advancing our understanding of electrocatalytic mechanisms and the structure-activity relationship of electrocatalysts. However, achieving this goal remains a formidable challenge because of the electrochemical instability observed in most PCPs. Herein, we develop a "modular design" strategy to construct electrochemically stable semiconducting PCP, namely, Fe-pyNDI, which incorporates a chain-type Fe-pyrazole metal cluster and π-stacking column with effective synergistic effects. The three-dimensional electron diffraction (3D ED) technique resolves the precise structure. Both theoretical and experimental investigation confirms that the π-stacking column in Fe-pyNDI can provide an efficient electron transport path and enhance the structural stability of the material. As a result, Fe-pyNDI can serve as an efficient model electrocatalyst for nitrate reduction reaction (NO3RR) to ammonia with a superior ammonia yield of 339.2 µmol h-1 cm-2 (14677 µg h-1 mgcat. -1) and a faradaic efficiency of 87 % at neutral electrolyte, which is comparable to state-of-the-art electrocatalysts. The in-situ X-ray absorption spectroscopy (XAS) reveals that during the reaction, the structure of Fe-pyNDI can be kept, while part of the Fe3+ in Fe-pyNDI was reduced in situ to Fe2+, which serves as the potential active species for NO3RR.

4.
J Am Chem Soc ; 145(26): 14456-14465, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37350764

RESUMEN

Porous liquids (PLs) are attractive materials because of their capability to combine the intrinsic porosity of microporous solids and the processability of liquids. Most of the studies focus on the synthesis of PLs with not only high porosity but also low viscosity by considering their transportation in industrial plants. However, a gap exists between PLs and solid adsorbents for some practical cases, where the liquid characteristics and mechanical stability without leakage are simultaneously required. Here, we fill in this gap by demonstrating a new concept of pore-networked gels, in which the solvent phase is trapped by molecular networks with accessible porosity. To achieve this, we fabricate a linked metal-organic polyhedra (MOPs) gel, followed by exchanging the solvent phase with a bulky liquid such as ionic liquids (ILs); the dimethylformamide solvent trapped inside the as-synthesized gel is replaced by the target IL, 1-butyl-3-methylimidazolium tetrafluoroborate, which in turn cannot enter MOP pores due to their larger molecular size. The remaining volatile solvents in the MOP cavities can then be removed by thermal activation, endowing the obtained IL gel (Gel_IL) with accessible microporosity. The CO2 capacities of the gels are greatly enhanced compared to the neat IL. The exchange with the IL also exerts a positive influence on the final gel performances such as mechanical properties and low volatility. Besides ILs, various functional liquids are shown to be amenable to this strategy to fabricate pore-networked gels with accessible porosity, demonstrating their potential use in the field of gas adsorption or separation.

5.
Angew Chem Int Ed Engl ; 62(2): e202215234, 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36377418

RESUMEN

Exploring new porous coordination polymers (PCPs) that have tunable structure and conductivity is attractive but remains challenging. Herein, fine pore structure engineering by ligand conformation control of naphthalene diimide (NDI)-based semiconducting PCPs with π stacking-dependent conductivity tunability is achieved. The π stacking distances and ligand conformation in these isoreticular PCPs were modulated by employing metal centers with different coordination geometries. As a result, three conjugated PCPs (Co-pyNDI, Ni-pyNDI, and Zn-pyNDI) with varying pore structure and conductivity were obtained. Their crystal structures were determined by three-dimensional electron diffraction. The through-space charge transfer and tunable pore structure in these PCPs result in modulated selectivity and sensitivity in gas sensing. Zn-pyNDI can serve as a room-temperature operable chemiresistive sensor selective to acetone.

6.
Angew Chem Int Ed Engl ; 62(35): e202303903, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37211927

RESUMEN

A one-stone, two-bird method to integrate the soft porosity and electrical properties of distinct metal-organic frameworks (MOFs) into a single material involves the design of conductive-on-insulating MOF (cMOF-on-iMOF) heterostructures that allow for direct electrical control. Herein, we report the synthesis of cMOF-on-iMOF heterostructures using a seeded layer-by-layer method, in which the sorptive iMOF core is combined with chemiresistive cMOF shells. The resulting cMOF-on-iMOF heterostructures exhibit enhanced selective sorption of CO2 compared to the pristine iMOF (298 K, 1 bar, S CO 2 / H 2 ${{_{{\rm CO}{_{2}}/{\rm H}{_{2}}}}}$ from 15.4 of ZIF-7 to 43.2-152.8). This enhancement is attributed to the porous interface formed by the hybridization of both frameworks at the molecular level. Furthermore, owing to the flexible structure of the iMOF core, the cMOF-on-iMOF heterostructures with semiconductive soft porous interfaces demonstrated high flexibility in sensing and electrical "shape memory" toward acetone and CO2 . This behavior was observed through the guest-induced structural changes of the iMOF core, as revealed by the operando synchrotron grazing incidence wide-angle X-ray scattering measurements.

7.
Faraday Discuss ; 231(0): 397-417, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34596180

RESUMEN

This paper describes the content of my "Concluding remarks" talk at the Faraday Discussion meeting on "MOFs for energy and the environment" (online, 23-25 June 2021). The panel consisted of sessions on the design of MOFs and MOF hybrids (synthetic chemistry), their applications (e.g., capture, storage, separation, electrical devices, photocatalysis), advanced characterization (e.g., transmission electron microscopy, solid-state nuclear magnetic resonance), theory and modeling, and commercialization. MOF chemistry is undergoing a significant evolution from simply network chemistry to the chemistry of synergistic integration with heterogeneous materials involving other disciplines (we call this the fourth generation type). As reflected in the papers of the invited speakers and discussions with the participants, the present and future of this field will be described in detail.

8.
Angew Chem Int Ed Engl ; 60(18): 9931-9935, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33591574

RESUMEN

The construction of hydrophobic nanochannel with hydrophilic sites for bionic devices to proximally mimick real bio-system is still challenging. Taking the advantages of MOF chemistry, a highly oriented CuTCPP thin film has been successfully reconstructed with ultra-thin nanosheets to produce abundant two-dimensional interstitial hydrophobic nanochannels with hydrophilic sites. Different from the classical active-layer material with proton transport in bulk, CuTCPP thin film represents a new type of active-layer with proton transport in nanochannel for bionic proton field-effect transistor (H+ -FETs). The resultant device can reversibly modulate the proton transport by varying the voltage on its gate electrode. Meanwhile, it shows the highest proton mobility of ≈9.5×10-3  cm2 V-1 s-1 and highest on-off ratio of 4.1 among all of the reported H+ -FETs. Our result demonstrates a powerful material design strategy for proximally mimicking the structure and properties of bio-systems and constructing bionic electrical devices.

9.
Angew Chem Int Ed Engl ; 59(1): 172-176, 2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31595640

RESUMEN

Single-ligand-based electronically conductive porous coordination polymers/metal-organic frameworks (EC-PCPs/MOFs) fail to meet the requirements of numerous electronic applications owing to their limited tunability in terms of both conductivity and topology. In this study, a new 2D π-conjugated EC-MOF containing copper units with mixed trigonal ligands was developed: Cu3 (HHTP)(THQ) (HHTP=2,3,6,7,10,11-hexahydrotriphenylene, THQ=tetrahydroxy-1,4-quinone). The modulated conductivity (σ≈2.53×10-5  S cm-1 with an activation energy of 0.30 eV) and high porosity (ca. 441.2 m2 g-1 ) of the Cu3 (HHTP)(THQ) semiconductive nanowires provided an appropriate resistance baseline and highly accessible areas for the development of an excellent chemiresistive gas sensor.

10.
Angew Chem Int Ed Engl ; 58(9): 2692-2695, 2019 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-30614186

RESUMEN

Superlattice materials offer new opportunities to modify optical and electrical properties of recently emerging 2D materials. The insertion of tetraethylbenzidine (EtDAB) into interlamination of the established 2D PbI2 semiconductor through a mild solution method yielded the first lead iodide superlattice, EtDAB⋅4PbI2 (EtDAB=tetraethylbenzidine), with radical and non-radical forms. The non-radical form has a non-ionic structure that differs from the common ionic structures for inorganic-organic hybrid lead halides. The radical form shows five orders of magnitude greater conductance and broader photoconductive response range (UV/Vis → UV/Vis-IR), than pure PbI2 and the non-radical form of the superlattice.

11.
Angew Chem Int Ed Engl ; 58(42): 14915-14919, 2019 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-31356720

RESUMEN

Heterostructured metal-organic framework (MOF)-on-MOF thin films have the potential to cascade the various properties of different MOF layers in a sequence to produce functions that cannot be achieved by single MOF layers. An integration method that relies on van der Waals interactions, and which overcomes the lattice-matching limits of reported methods, has been developed. The method deposits molecular sieving Cu-TCPP (TCPP=5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin) layers onto semiconductive Cu-HHTP (HHTP=2,3,6,7,10,11-hexahydrotriphenylene) layers to obtain highly oriented MOF-on-MOF thin films. For the first time, the properties in different MOF layers were cascaded in sequence to synergistically produce an enhanced device function. Cu-TCPP-on-Cu-HHTP demonstrated excellent selectivity and the highest response to benzene of the reported recoverable chemiresistive sensing materials that are active at room temperature. This method allows integration of MOFs with cascading properties into advanced functional materials.

12.
Angew Chem Int Ed Engl ; 56(52): 16510-16514, 2017 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-29071780

RESUMEN

The utility of electronically conductive metal-organic frameworks (EC-MOFs) in high-performance devices has been limited to date by a lack of high-quality thin film. The controllable thin-film fabrication of an EC-MOF, Cu3 (HHTP)2 , (HHTP=2,3,6,7,10,11-hexahydroxytriphenylene), by a spray layer-by-layer liquid-phase epitaxial method is reported. The Cu3 (HHTP)2 thin film can not only be precisely prepared with thickness increment of about 2 nm per growing cycle, but also shows a smooth surface, good crystallinity, and high orientation. The chemiresistor gas sensor based on this high-quality thin film is one of the best room-temperature sensors for NH3 among all reported sensors based on various materials.

14.
Angew Chem Int Ed Engl ; 55(2): 514-8, 2016 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-26549327

RESUMEN

Crystalline nanotube array would create great opportunity for novel electrical application. Herein we report the first example of a metal halide based crystalline nanotube array which is constructed from an unprecedented giant [Pb(II)18I54(I2)9] wheel cluster, as determined by synchrotron X-ray diffraction. The electrical properties of the single crystal were studied and the present compound shows typical semiconductivity and highly anisotropic conductivity.

15.
Nanomicro Lett ; 16(1): 228, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38935160

RESUMEN

Ammonia (NH3) is a carbon-free, hydrogen-rich chemical related to global food safety, clean energy, and environmental protection. As an essential technology for meeting the requirements raised by such issues, NH3 capture has been intensively explored by researchers in both fundamental and applied fields. The four typical methods used are (1) solvent absorption by ionic liquids and their derivatives, (2) adsorption by porous solids, (3) ab-adsorption by porous liquids, and (4) membrane separation. Rooted in the development of advanced materials for NH3 capture, we conducted a coherent review of the design of different materials, mainly in the past 5 years, their interactions with NH3 molecules and construction of transport pathways, as well as the structure-property relationship, with specific examples discussed. Finally, the challenges in current research and future worthwhile directions for NH3 capture materials are proposed.

16.
Bioresour Technol ; 412: 131413, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39226943

RESUMEN

Landfill leachate contains ammonium and micropollutants. Ammonium can be biologically removed but bio-recalcitrant micropollutants removal requires post-treatment like ozonation. This study developed an expanded clay aggregates packed biofilm column (EBC) and demonstrated its feasibility of coupling biodegradation and ozonation (CBAO) to simultaneously remove nitrogen and bio-recalcitrant micropollutants. The first 60 days only had biodegradation process to start the bioreactor. 51 % nitrogen was biologically removed but the removal of micropollutant carbamazepine (CBZ) was only 30 %. From 61 d to 150 d, both biodegradation and ozonation were performed in the EBC. After 48 h-biodegradation, ozone gas was introduced and bubbling through EBC for 30 min to further remove residual micropollutants. At 0.4 gO3/gCOD, CBZ were completely removed. The average nitrogen removal efficiency (85 %) was increased by 34 % because the increased abundance of nitrifying and denitrifying bacteria in EBC. This study confirmed the promising potential of the CBAO process for treating landfill leachte.


Asunto(s)
Biodegradación Ambiental , Reactores Biológicos , Nitrógeno , Ozono , Contaminantes Químicos del Agua , Ozono/química , Biopelículas , Purificación del Agua/métodos , Carbamazepina/aislamiento & purificación
17.
Anal Methods ; 15(48): 6643-6647, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38044886

RESUMEN

Combining powerful adsorption capacity, simple preparation, rapid separation as well as superior stability and recyclability, a polyurea-magnetic hierarchical porous composite has been prepared. It demonstrates efficient physisorption for anionic metabolites in less than one minute and is promising for application to the analysis of a broad range of anionic metabolites in complex matrices.

18.
Nat Commun ; 14(1): 4245, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37454124

RESUMEN

Developing artificial porous systems with high molecular recognition performance is critical but very challenging to achieve selective uptake of a particular component from a mixture of many similar species, regardless of the size and affinity of these competing species. A porous platform that integrates multiple recognition mechanisms working cooperatively for highly efficient guest identification is desired. Here, we designed a flexible porous coordination polymer (PCP) and realised a corrugated channel system that cooperatively responds to only target gas molecules by taking advantage of its stereochemical shape, location of binding sites, and structural softness. The binding sites and structural deformation act synergistically, exhibiting exclusive discrimination gating (EDG) effect for selective gate-opening adsorption of CO2 over nine similar gas molecules, including N2, CH4, CO, O2, H2, Ar, C2H6, and even higher-affinity gases such as C2H2 and C2H4. Combining in-situ crystallographic experiments with theoretical studies, it is clear that this unparalleled ability to decipher the CO2 molecule is achieved through the coordination of framework dynamics, guest diffusion, and interaction energetics. Furthermore, the gas co-adsorption and breakthrough separation performance render the obtained PCP an efficient adsorbent for CO2 capture from various gas mixtures.


Asunto(s)
Dióxido de Carbono , Gases , Adsorción , Sitios de Unión , Transporte Biológico
19.
Commun Chem ; 6(1): 62, 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37016050

RESUMEN

Incorporating strong electron donor functionality into flexible coordination networks is intriguing for sorption applications due to a built-in mechanism for electron-withdrawing guests. Here we report a 2D flexible porous coordination network, [Ni2(4,4'-bipyridine)(VTTF)2]n(1) (where H2VTTF = 2,2'-[1,2-bis(4-benzoic acid)-1,2ethanediylidene]bis-1,3-benzodithiole), which exhibits large structural deformation from the as-synthesized or open phase (1α) into the closed phase (1ß) after guest removal, as demonstrated by X-ray and electron diffraction. Interestingly, upon exposure to electron-withdrawing species, 1ß reversibly undergoes guest accommodation transitions; 1α⊃O2 (90 K) and 1α⊃N2O (185 K). Moreover, the 1ß phase showed exclusive O2 sorption over other gases (N2, Ar, and CO) at 120 K. The phase transformations between the 1α and 1ß phases under these gases were carefully investigated by in-situ X-ray diffraction, in-situ spectroscopic studies, and DFT calculations, validating that the unusual sorption was attributed to the combination of flexible frameworks and VTTF (electron-donor) that induces strong interactions with electron-withdrawing species.

20.
Nano Res ; 15(9): 8185-8213, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35789633

RESUMEN

Various diseases increasingly challenge the health status and life quality of human beings. Volatolome emitted from patients has been considered as a potential family of markers, volatolomics, for diagnosis/screening. There are two fundamental issues of volatolomics in healthcare. On one hand, the solid relationship between the volatolome and specific diseases needs to be clarified and verified. On the other hand, effective methods should be explored for the precise detection of volatolome. Several comprehensive review articles had been published in this field. However, a timely and systematical summary and elaboration is still desired. In this review article, the research methodology of volatolomics in healthcare is critically considered and given out, at first. Then, the sets of volatolome according to specific diseases through different body sources and the analytical instruments for their identifications are systematically summarized. Thirdly, the advanced electronic nose and photonic nose technologies for volatile organic compounds (VOCs) detection are well introduced. The existed obstacles and future perspectives are deeply thought and discussed. This article could give a good guidance to researchers in this interdisciplinary field, not only understanding the cutting-edge detection technologies for doctors (medicinal background), but also making reference to clarify the choice of aimed VOCs during the sensor research for chemists, materials scientists, electronics engineers, etc.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA