Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Acta Pharmacol Sin ; 44(1): 221-233, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35676531

RESUMEN

TPN171 is a novel phosphodiesterase-5 (PDE5) inhibitor used to treat pulmonary arterial hypertension (PAH) and erectile dysfunction (ED), which currently is undergoing phase II clinical trials in China. In this single-center, single-dose, nonrandomized, and open design study, radiolabeled [14C]TPN171 was used to investigate the metabolic mechanism, pharmacokinetic characteristics, and clearance pathways of TPN171 in 6 healthy Chinese male volunteers. Each volunteer was administered a single oral suspension of 10 mg (100 µCi) of [14C]TPN171. We found that TPN171 was absorbed rapidly in humans with a peak time (Tmax) of 0.667 h and a half-life (t1/2) of approximately 9.89 h in plasma. Excretion of radiopharmaceutical-related components was collected 216 h after administration, accounting for 95.21% of the dose (46.61% in urine and 48.60% in feces). TPN171 underwent extensive metabolism in humans. Twenty-two metabolites were detected in human plasma, urine, and feces using a radioactive detector combined with a high-resolution mass spectrometer. According to radiochromatograms, a glucuronide metabolite of O-dealkylated TPN171 exceeded 10% of the total drug-related components in human plasma. However, according to the Food and Drug Administration (FDA) guidelines, no further tests are needed to evaluate the safety of this metabolite because it is a phase II metabolite, but the compound is still worthy of attention. The main metabolic biotransformation of TPN171 was mono-oxidation (hydroxylation and N-oxidation), dehydrogenation, N-dealkylation, O-dealkylation, amide hydrolysis, glucuronidation, and acetylation. Cytochrome P450 3A4 (CYP3A4) mainly catalyzed the formation of metabolites, and CYP2E1 and CYP2D6 were involved in the oxidative metabolism of TPN171 to a lesser extent. According to the incubation data, M1 was mainly metabolized to M1G by UDP-glucuronosyltransferase 1A9 (UGT1A9), followed by UGT1A7 and UGT1A10.


Asunto(s)
Inhibidores de Fosfodiesterasa 5 , Hipertensión Arterial Pulmonar , Humanos , Masculino , Inhibidores de Fosfodiesterasa 5/uso terapéutico , Pirimidinonas , Biotransformación , Heces , Administración Oral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA