Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Small ; : e2311881, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38372502

RESUMEN

Shaping covalent organic frameworks (COFs) into macroscopic objects with robust mechanical properties and hierarchically porous structure is of great significance for practical applications but remains formidable and challenging. Herein, a general and scalable protocol is reported to prepare ultralight and robust pure COF fiber aerogels (FAGs), based on the epitaxial growth synergistic assembly (EGSA) strategy. Specifically, intertwined COF nanofibers (100-200 nm) are grown in situ on electrospinning polyacrylonitrile (PAN) microfibers (≈1.7 µm) containing urea-based linkers, followed by PAN removal via solvent extraction to obtain the hollow COF microfibers. The resultant COF FAGs possess ultralow density (14.1-15.5 mg cm-3 ) and hierarchical porosity that features both micro-, meso-, and macropores. Significantly, the unique interconnected structure composed of nanofibers and hollow microfibers endows the COF FAGs with unprecedented mechanical properties, which can fully recover at 50% strain and be compressed for 20 cycles with less than 5% stress degradation. Moreover, the aerogels exhibit excellent capacity for organic solvent absorption (e.g., chloroform uptake of >90 g g-1 ). This study opens new avenues for the design and fabrication of macroscopic COFs with excellent properties.

2.
Small ; 18(8): e2104387, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34716658

RESUMEN

Metal-organic frameworks (MOFs) have potential applications in removing pollutants such as heavy metals, oils, and toxins from water. However, due to the intrinsic fragility of MOFs and their fine powder form, there are still technical barriers to their practical application such as blockage of pipes, difficulty in recovery, and potential environmental toxicity. Therefore, attention has focused on approaches to convert nanocrystalline MOFs into macroscopic materials to overcome these limitations. Recently, strategies for shaping MOFs into beads (0D), nanofibers (1D), membranes (2D), and gels/sponges (3D) with macrostructures are developed including direct mixing, in situ growth, or deposition of MOFs with polymers, cotton, foams or other porous substrates. In this review, successful strategies for the fabrication of macroscopic materials from MOFs and their applications in removing pollutants from water including adsorption, separation, and advanced oxidation processes, are discussed. The relationship between the macroscopic performance and the microstructure of materials, and how the range of 0D to 3D macroscopic materials can be used for water treatment are also outlined.


Asunto(s)
Contaminantes Ambientales , Estructuras Metalorgánicas , Metales Pesados , Purificación del Agua , Adsorción , Estructuras Metalorgánicas/química , Metales Pesados/química
3.
Nanotechnology ; 33(24)2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35255485

RESUMEN

Since uncontrolled lithium (Li) dendrite growth and dendrite-induced dead Li severely limit the development of Li metal batteries, 3D Cu current collectors can effectively alleviate these problems during Li plating/stripping. Herein, one-step galvanostatic electrodeposition method is employed to fabricate a new current collector on Cu foam decorated with large-scale and uniform 3D porous Cu-based nanoflake (NF) structures (abbreviated as 3D Cu NF@Cu foam). This 3D structure with large internal surface areas not only generates lithophilic surface copper oxides and hydroxides as charge centers and nucleation sites for Li insertion/extraction, but also endows abundant space with interlinked NFs for buffering the cell volume expansion and increasing battery performance. As a result, Li-deposited 3D Cu NF@Cu foam current collector can realize stable cycling over 455 cycles with an average Coulombic efficiency of 98.8% at a current density of 1.0 mA cm-2, as well as a prolonged lifespan of >380 cycles in symmetrical cell without short-circuit, which are superior to those of blank Cu foam current collector. This work realizes Li metal anode stabilization by constructing 3D porous Cu NFs current collectors, which can advance the development of Li metal anode for battery industries.

4.
Environ Sci Technol ; 56(12): 8833-8843, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35618660

RESUMEN

Single oxygen-based advanced oxidation processes (1O2-AOPs) exhibit great prospects in selective degradation of organic pollutants. However, efficient production of 1O2 via tailored design of catalysts to achieve selective oxidation of contaminants remains challenging. Herein, we develop a simple strategy to regulate the components and coordination of Co-N-C catalysts at the atomic level by adjusting the Zn/Co ratio of bimetallic zeolitic imidazolate frameworks (ZnxCo1-ZIFs). Zn4Co1-C demonstrates 98% selective removal of phenol in the mixed phenol/benzoic acid (phenol/BA) solutions. Density functional theory calculations and experiments reveal that more active CoN4 sites are generated in Zn4Co1-C, which are beneficial to peroxymonosulfate activation to generate 1O2. Furthermore, the correlation between the origin of selectivity and well-defined catalysts is systematically investigated by the electron paramagnetic resonance test and quenching experiments. This work may provide novel insights into selective removal of target pollutants in a complicated water matrix.


Asunto(s)
Contaminantes Ambientales , Catálisis , Oxígeno , Peróxidos , Fenoles , Agua
5.
Environ Res ; 206: 112618, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-34954145

RESUMEN

Well dispersed nanocatalysts on porous substrate with macroscopic morphology are highly desired for the application of heterogeneous catalysis. Traditional fabrication process suffers from multiple steps for controlling the structure on nanocatalysts and matrix or both. Herein, we report a facile strategy for the synthesis of millimeter-sized hierarchical porous carbon beads (HPCBs) which containing well dispersed hollow-nano carbon boxes for peroxymonosulfate catalysis. Specially, the precursors of HPCBs were prepared by phase inversion method, which involving introduction of zeolitic imidazolate framework (ZIF-8) nanocubes into polyacrylonitrile (PAN) solutions followed by solidification of the mixture. After pyrolysis, nitrogen doped and hierarchical porous HPCBs with diameter of about 1.2 mm were obtained. The merits of our synthesis strategy lie in that synchronizes the hollow microstructure evolution with the shaping of ZIF-8 nanocubes into millimeter scale beads. Attribute to its special structure feature and the appropriate chemical composition, the resultant millimeter-sized HPCBs exhibit enhanced catalytic performance by activation of peroxymonosulfate (PMS) for tetracycline degradation. The degradation efficiency of TC is up to 85.1% within 120 min, which is 18% higher than that of ZIF8-Solid/PAN carbon bead (SPCBs). In addition, the possible decomposition pathways, main reactive oxygen species, and reasonable enhanced mechanism for the HPCBs/PMS system are systematically investigated by quenching experiments, electron paramagnetic resonance (EPR) and liquid chromatography-mass spectrometry (LC-MS). This work addresses the issue of easy aggregation and recycling of carbon materials in industrial productions and extends the prospects of carbon materials in engineering applications.


Asunto(s)
Carbono , Zeolitas , Resinas Acrílicas , Carbono/química , Catálisis , Peróxidos , Porosidad
6.
Sci Total Environ ; 912: 169035, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38056677

RESUMEN

Adsorption is one of the most effective methods for ecotoxic antibiotics removal, while developing high-performance adsorbents with excellent adsorption capacity is indispensable. As the unavoidable by-product of wastewater, sewage sludge has dual properties of pollution and resources. In this study, dyeing sludge waste was converted to biochar by KOH activation and pyrolysis, and used as an efficient adsorbent for aqueous antibiotics removal. The optimized dyeing sludge-derived biochar (KSC-8) has excellent specific surface area (1178.4 m2/g) and the adsorption capacity for tetracycline (TC) could reach up to 1081.3 mg/g, which is four and five times higher than those without activation, respectively. The PSO (pseudo-second-order) kinetic model and the Langmuir isotherm model fitted better to the experimental data. The obtained KSC-8 has stabilized adsorption capacity for long-term fixed-bed experiments, and maintained 86.35% TC removal efficiency after five adsorption-regeneration cycles. The adsorption mechanism involves electrostatic attraction, hydrogen bonding, π-π interactions and pore filling. This work is a green and eco-friendly way as converting the waste to treat waste in aiming of simultaneous removal of antibiotics and resource recovery of dyeing sludge.


Asunto(s)
Antibacterianos , Contaminantes Químicos del Agua , Aguas del Alcantarillado , Colorantes , Agua , Tetraciclina , Carbón Orgánico , Adsorción , Cinética , Contaminantes Químicos del Agua/análisis
7.
Sci Total Environ ; 915: 170183, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38246367

RESUMEN

Converting industrial sludge into catalytic materials for water purification is a promising approach to simultaneously realize effective disposal of sludge and resource of water. However, manipulating the high efficiency remains a huge challenge due to the difficulty in the active sites control of the sludge. Herein, we proposed a constitutive modulation strategy by the combination of hydrothermal and pyrolysis (HTP) for the fabrication of defects-assistant Fe containing sludge-derived carbon catalysts on upgrading performance in peroxymonosulfate (PMS) activation for pollutant degradation. Adjustable defects on dyeing sludge-derived carbon catalysts (DSCC) were achieved by introducing oxygen or nitrogen functional precursors (hydroquinone or p-phenylenediamine) during hydrothermal processes and by further pyrolysis, where O was detrimental while N was beneficial to defect generation. Compared to the DSCC with less defects (DHSC-O), the defect-rich sample (DHSC-2N) exhibited superior catalytic performance of PMS activation for bisphenol A (BPA) elimination (k = 0.45 min-1, 2.52 times of DHSC-O), as well as 81.4% total organic carbon (TOC) removal. Meanwhile, the degradation capacity was verified in wide pH range (2.1-8.1) and various aqueous matrices, reflecting the excellent adaptability and anti-interference performance. Furthermore, the continuous-flow experiments on industrial wastewater showed synchronous BPA and chemical oxygen demand (COD) removal, implying great potential for practical application. Solid electron paramagnetic resonance (EPR) and 57Fe Mösssbauer spectra analysis indicated that the defects acted as secondary active sites for Fe sites, which were beneficial to accelerating the electron transfer process. The only Fe active sites preferred the radical pathway. The controllable reaction tendency provides possibilities for the on-demand design of sludge-based catalysts to meet the requirements of practical wastewater treatment under Fenton-like reaction.

8.
J Colloid Interface Sci ; 661: 358-365, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38301472

RESUMEN

Rational design of high-performance electrode materials is crucial for enhancing desalination performance of capacitive deionization (CDI). Here, ultrathin nitrogen-doped carbon/Ti3C2Tx-TiN (NC/MX-TiN) heterostructure was developed by pyrolyzing zeolite imidazolate framework-8 (ZIF-8) nanoparticles sandwiched MXene (ZSM), which were formed by assembling ultrafine ZIF-8 nanoparticles with size of 20 nm on both sides of MXene nanosheets. The introduction of ultrasmall ZIF-8 particles allowed for in situ nitridation of the MXene during pyrolysis, forming consecutive TiN layers tightly connected to the internal MXene. The two-dimensional (2D) heterostructure exhibited remarkable properties, including high specific surface area and excellent conductivity. Additionally, the resulting TiN demonstrated exceptional redox capability, which significantly enhanced the performance of CDI and ensured cycling stability. Benefiting from these advantages, the NC/MX-TiN exhibited a maximum adsorption capacity of 45.6 mg g-1 and a steady cycling performance in oxygenated saline water over 50 cycles. This work explores the rational design and construction of MXene-based 2D heterostructure and broadens new horizons for the development of novel CDI electrode materials.

9.
Prostate Cancer Prostatic Dis ; 26(3): 596-601, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37193776

RESUMEN

BACKGROUND: Patient outcomes were assessed based on a pre-biopsy ExoDx Prostate (EPI) score at 2.5 years of the 5-year follow-up of ongoing prostate biopsy Decision Impact Trial of the ExoDx Prostate (IntelliScore). METHODS: Prospective, blinded, randomized, multisite clinical utility study was conducted from June 2017 to May 2018 (NCT03235687). Urine samples were collected from 1049 men (≥50 years old) with a PSA 2-10 ng/mL being considered for a prostate biopsy. Patients were randomized to EPI vs. standard of care (SOC). All had an EPI test, but only EPI arm received results during biopsy decision process. Clinical outcomes, time to biopsy and pathology were assessed among low (<15.6) or high (≥15.6) EPI scores. RESULTS: At 2.5 years, 833 patients had follow-up data. In the EPI arm, biopsy rates remained lower for low-risk EPI scores than high-risk EPI scores (44.6% vs 79.0%, p < 0.001), whereas biopsy rates were identical in SOC arm regardless of EPI score (59.6% vs 58.8%, p = 0.99). Also in the EPI arm, the average time from EPI testing to first biopsy was longer for low-risk EPI scores compared to high-risk EPI scores (216 vs. 69 days; p < 0.001). Similarly, the time to first biopsy was longer with EPI low-risk scores in EPI arm compared to EPI low-risk scores in SOC arm (216 vs 80 days; p < 0.001). At 2.5 years, patients with low-risk EPI scores from both arms had less HGPC than high-risk EPI score patients (7.9% vs 26.8%, p < 0.001) and the EPI arm found 21.8% more HGPC than the SOC arm. CONCLUSIONS: This follow-up analysis captures subsequent biopsy outcomes and demonstrates that men receiving EPI low-risk scores (<15.6) significantly defer the time to first biopsy and remain at a very low pathologic risk by 2.5-years after the initial study. The EPI test risk stratification identified low-risk patients that were not found with the SOC.


Asunto(s)
Próstata , Neoplasias de la Próstata , Masculino , Humanos , Persona de Mediana Edad , Próstata/patología , Neoplasias de la Próstata/patología , Antígeno Prostático Específico , Estudios Prospectivos , Biopsia
10.
Chem Sci ; 13(32): 9159-9164, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-36093027

RESUMEN

The organized assembly of nanoparticles into complex macroarchitectures opens up a promising pathway to create functional materials. Here, we demonstrate a scalable strategy to fabricate macroarchitectures with high compressibility and elasticity from hollow particle-based carbon nanofibers. This strategy causes zeolitic imidazolate framework (ZIF-8)-polyacrylonitrile nanofibers to assemble into centimetre-sized aerogels (ZIF-8/NFAs) with expected shapes and tunable functions on a large scale. On further carbonization of ZIF-8/NFAs, ZIF-8 nanoparticles are transformed into a hollow structure to form the carbon nanofiber aerogels (CNFAs). The resulting CNFAs integrate the properties of zero-dimensional hollow structures, one-dimensional nanofibers, and three-dimensional carbon aerogels, and exhibit a low density of 7.32 mg cm-3, high mechanical strength (rapid recovery from 80% strain), outstanding adsorption capacity, and excellent photo-thermal conversion potential. These results provide a platform for the future development of macroarchitectured assemblies from nanometres to centimetres and facilitate the design of multifunctional materials.

11.
Chem Sci ; 12(46): 15418-15422, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34976363

RESUMEN

Heterogeneous Fenton-like processes are very promising methods of treating organic pollutants through the generation of reactive oxygen containing radicals. Herein, we report novel 0D-1D hybrid nanoarchitectonics (necklace-like structures) consisting of FeCo@N-C yolk-shell nanoreactors as advanced catalysts for Fenton-like reactions. Each FeCo@N-C unit possesses a yolk-shell structure like a nanoreactor, which can accelerate the diffusion of reactive oxygen species and guard the active sites of FeCo. Furthermore, all the nanoreactors are threaded along carbon fibers, providing a highway for electron transport. FeCo@N-C nano-necklaces thereby exhibit excellent performance for pollutant removal via activation of peroxymonosulfate, achieving 100% bisphenol A (k = 0.8308 min-1) degradation in 10 min with good cycling stability. The experiments and density-functional theory calculations reveal that FeCo dual sites are beneficial for activation of O-O, which is crucial for enhancing Fenton-like processes.

12.
J Hazard Mater ; 392: 122164, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32086095

RESUMEN

Sulfate radical (SO4•-)-based advanced oxidation processes (SR-AOPs) hold great promise for water purification due to their strong oxidizing and high selectivity. Recently, metal-organic frameworks (MOFs) as catalysts for peroxymonosulfate (PMS) activation to generate SO4•- have shown a bright future. However, the intrinsic nature of powder MOF nanocrystals, such as brittleness and poor processability, largely disturb their large-scale applications in practical. Herein, we develop an in situ growth method to prepare MOF filters. ZIF-67 in situ growth on the polyacrylonitrile (PAN) fibers lead to the ZIF-67/PAN composite fibers with high loading (up to 50 wt %). The loading ZIF-67 can retain their morphology and structure, which is comparable with that of pristine ZIF-67 powder. The ZIF-67/PAN filter demonstrates a high efficiency for organic pollutants removal by PMS activation. Furthermore, through the fabrication of filtration device, the dynamic catalysis results show the ZIF-67/PAN filter is a promising material for water purification. This work provides a new method for applying MOFs-based functional materials to practical water remediation and other separation applications.

14.
J Food Sci ; 75(6): H205-11, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20722933

RESUMEN

Atherosclerosis and its related complications are the leading causes of death in the West and in many developed countries. This study aims to investigate the hypolipidemic effect of bamboo shoot oil (BSO) in Sprague-Dawley rats. A group of rats had induced hyperlipidemia, hypercholesterolemia, and fatty liver by being fed with a high-fat, high-cholesterol diet for 4 wk. The control group was administered 10 mL distilled water per kg body weight, while the other groups were, respectively, administered 250 mg beta-sitosterol, 250 mg BSO, 500 mg BSO, and 1000 mg BSO per kg body weight by oral gavage. The results demonstrated that BSO could significantly decrease the levels of total cholesterol, triacylglycerol, low-density lipoprotein-cholesterol, phytosterol, lipoprotein lipase, hepatic lipase, and atherogenic index in serum, and increase the levels of cholesterol in feces. It could also significantly decrease the level of relative liver weight and liver lipids. The pronounced hypolipidemic effects of BSO might be attributed to its ability to inhibit cholesterol absorption and increase cholesterol excretion. These results suggest that consuming BSO may provide benefits in managing hypercholesterolemia. Therefore, BSO may be a good candidate for development as a functional food and nutraceutical.


Asunto(s)
Hiperlipidemias/prevención & control , Hipolipemiantes/uso terapéutico , Fitoterapia , Aceites de Plantas/uso terapéutico , Brotes de la Planta/química , Poaceae/química , Animales , Colesterol/análisis , Colesterol/sangre , Colesterol/metabolismo , Dieta Aterogénica , Relación Dosis-Respuesta a Droga , Hígado Graso/patología , Heces/química , Hiperlipidemias/sangre , Hiperlipidemias/tratamiento farmacológico , Hiperlipidemias/patología , Lípidos/análisis , Lípidos/sangre , Lípidos/química , Hígado/química , Hígado/patología , Masculino , Tamaño de los Órganos/efectos de los fármacos , Fitosteroles/análisis , Fitosteroles/sangre , Fitosteroles/química , Aceites de Plantas/química , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA