Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Aging Neurosci ; 15: 1145542, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36993906

RESUMEN

Background and objective: Intracranial fusiform aneurysms (IFAs) are considered to have a complex pathophysiology process and poor natural history. The purpose of this study was to investigate the pathophysiological mechanisms of IFAs based on the characteristics of aneurysm wall enhancement (AWE), hemodynamics, and morphology. Methods: A total of 21 patients with 21 IFAs (seven fusiform types, seven dolichoectatic types, and seven transitional types) were included in this study. Morphological parameters of IFAs were measured from the vascular model, including the maximum diameter (Dmax), maximum length (Lmax), and centerline curvature and torsion of fusiform aneurysms. The three-dimensional (3D) distribution of AWE in IFAs was obtained based on high-resolution magnetic resonance imaging (HR-MRI). Hemodynamic parameters including time-averaged wall shear stress (TAWSS), oscillatory shear index (OSI), gradient oscillatory number (GON), and relative residence time (RRT) were extracted by computational fluid dynamics (CFD) analysis of the vascular model, and the relationship between these parameters and AWE was investigated. Results: The results showed that Dmax (p = 0.007), Lmax (p = 0.022), enhancement area (p = 0.002), and proportion of enhancement area (p = 0.006) were significantly different among three IFA types, and the transitional type had the largest Dmax, Lmax, and enhancement area. Compared with the non-enhanced regions of IFAs, the enhanced regions had lower TAWSS but higher OSI, GON, and RRT (p < 0.001). Furthermore, Spearman's correlation analysis showed that AWE was negatively correlated with TAWSS, but positively correlated with OSI, GON, and RRT. Conclusion: There were significant differences in AWE distributions and morphological features among the three IFA types. Additionally, AWE was positively associated with the aneurysm size, OSI, GON, and RRT, while negatively correlated with TAWSS. However, the underlying pathological mechanism of the three fusiform aneurysm types needs to be further studied.

2.
Front Neurol ; 14: 1087816, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37006506

RESUMEN

Background: The effects of angioplasty on intracranial atherosclerotic disease (ICAD)-related acute large-vessel occlusion stroke (LVOS) are unknown. We analyzed the efficacy and safety of angioplasty or stenting for ICAD-related LVOS and the optimal treatment duration. Methods: Patients with ICAD-related LVOS from a prospective cohort of the Endovascular Treatment Key Technique and Emergency Work Flow Improvement of Acute Ischemia Stroke registry were classified as follows: the early intraprocedural angioplasty and/or stenting (EAS) group was defined as the strategy using angioplasty or stenting without mechanical thrombectomy (MT) or one attempt of MT; the non-angioplasty and/or stenting (NAS) group, MT procedure without any angioplasty; and the late intraprocedural angioplasty and/or stenting (LAS) group, using same angioplasty techniques following two or more passes of MT. The primary endpoint was the modified Rankin Scale (mRS) score at 90 days. Other efficacy outcomes included mRS scores 0-1, mRS 0-2, and successful recanalization. Death within 90 days, and symptomatic ICH were safety endpoints. We use propensity score method to diminish the effect of treatment-selection bias. The odds ratio of recanalization rate and mRS score among EAS, NAS, and LAS groups were examined by unadjusted and adjusted logistic regression analysis among unweighted samples and inverse probability of treatment weighting (IPTW) samples. Results: We divided 475 cases into three groups. Functional outcomes at 90 days were better in the EAS group than in the NAS and LAS groups. The proportion of mRS 0-1, mRS 0-2, and successful recanalization cases were the highest in the EAS group. However, after IPTW, mortality rate among the three groups were similar (EAS vs. NAS vs. LAS: 19.0 vs. 18.1 vs. 18.7%, p = 0.98) as well as symptomatic intracranial hemorrhage within 24 h however, mortality rate and symptomatic intracranial hemorrhage among the three groups were similar. Logistic regression analysis in unweighted samples and IPTW samples both showed that EAS group had better outcomes. IPTW-adjusted logistic regression analysis demonstrated that the EAS group had better outcomes (mRS 0-1) than the NAS group (adjusted odds ratio [aOR], 0.55; 95% confidence interval [CI]: 0.34-0.88, p = 0.01) and LAS (aOR, 0.39; 95% CI: 0.22-0.68, p = 0.001). Conclusions: Angioplasty and/or stenting should be performed at an early stage for ICAD-related acute LVOS. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT03370939.

3.
Front Neurol ; 13: 1010777, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36438934

RESUMEN

Background: Hemodynamic factors are believed to be closely related to IA growth. However, the underlying pathophysiological mechanism that induces the growth sequence in tandem intracranial aneurysms (IAs) remains unclear. Methods and results: This study involved five patients with tandem IAs. Aneurysm models were reconstructed based on image datasets. A novel vascular restoration algorithm was proposed to generate the hypothetical geometry of the healthy parent vessel before each IA formation in the concatenated structure. Detailed hemodynamic patterns and morphological features were revealed under various growth sequences of tandem IAs to investigate the flow-driven mechanism of IA growth. Potential hemodynamic indicators of IA formation were proposed. Results: The patient cases were divided into two groups based on the size difference of tandem IAs. In the group with a similar size of tandem IAs, the position of the vortex core was associated with the site of the secondary aneurysm, while in the group with a significant size difference of the IAs, the position with the maximum curvature of the parent vessel plays a significant role in aneurysm formation. Conclusions: This study preliminarily revealed key hemodynamic and morphological indicators that determine the formation of tandem IAs. The proposed vascular restoration algorithm that provided the pre-aneurysm vasculature might be useful in investigating the flow-driven mechanism of IA growth, thus contributing to the risk evaluation of secondary aneurysm formation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA