Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
FASEB J ; 37(7): e23028, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37310356

RESUMEN

Leucine-rich repeat containing 8A (LRRC8A) volume regulated anion channels (VRACs) are activated by inflammatory and pro-contractile stimuli including tumor necrosis factor alpha (TNFα), angiotensin II and stretch. LRRC8A associates with NADPH oxidase 1 (Nox1) and supports extracellular superoxide production. We tested the hypothesis that VRACs modulate TNFα signaling and vasomotor function in mice lacking LRRC8A exclusively in vascular smooth muscle cells (VSMCs, Sm22α-Cre, Knockout). Knockout (KO) mesenteric vessels contracted normally but relaxation to acetylcholine (ACh) and sodium nitroprusside (SNP) was enhanced compared to wild type (WT). Forty-eight hours of ex vivo exposure to TNFα (10 ng/mL) enhanced contraction to norepinephrine (NE) and markedly impaired dilation to ACh and SNP in WT but not KO vessels. VRAC blockade (carbenoxolone, CBX, 100 µM, 20 min) enhanced dilation of control rings and restored impaired dilation following TNFα exposure. Myogenic tone was absent in KO rings. LRRC8A immunoprecipitation followed by mass spectroscopy identified 33 proteins that interacted with LRRC8A. Among them, the myosin phosphatase rho-interacting protein (MPRIP) links RhoA, MYPT1 and actin. LRRC8A-MPRIP co-localization was confirmed by confocal imaging of tagged proteins, Proximity Ligation Assays, and IP/western blots. siLRRC8A or CBX treatment decreased RhoA activity in VSMCs, and MYPT1 phosphorylation was reduced in KO mesenteries suggesting that reduced ROCK activity contributes to enhanced relaxation. MPRIP was a target of redox modification, becoming oxidized (sulfenylated) after TNFα exposure. Interaction of LRRC8A with MPRIP may allow redox regulation of the cytoskeleton by linking Nox1 activation to impaired vasodilation. This identifies VRACs as potential targets for treatment or prevention of vascular disease.


Asunto(s)
Músculo Liso Vascular , Animales , Ratones , Acetilcolina/farmacología , Aniones , Proteínas de la Membrana/genética , Ratones Noqueados , Fosfatasa de Miosina de Cadena Ligera , Transducción de Señal , Factor de Necrosis Tumoral alfa/farmacología , Músculo Liso Vascular/citología , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiología
2.
Am J Physiol Heart Circ Physiol ; 325(4): H687-H701, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37566109

RESUMEN

The ductus arteriosus (DA) is a vascular shunt that allows oxygenated blood to bypass the developing lungs in utero. Fetal DA patency requires vasodilatory signaling via the prostaglandin E2 (PGE2) receptor EP4. However, in humans and mice, disrupted PGE2-EP4 signaling in utero causes unexpected patency of the DA (PDA) after birth, suggesting another role for EP4 during development. We used EP4-knockout (KO) mice and acute versus chronic pharmacological approaches to investigate EP4 signaling in DA development and function. Expression analyses identified EP4 as the primary EP receptor in the DA from midgestation to term; inhibitor studies verified EP4 as the primary dilator during this period. Chronic antagonism recapitulated the EP4 KO phenotype and revealed a narrow developmental window when EP4 stimulation is required for postnatal DA closure. Myography studies indicate that despite reduced contractile properties, the EP4 KO DA maintains an intact oxygen response. In newborns, hyperoxia constricted the EP4 KO DA but survival was not improved, and permanent remodeling was disrupted. Vasomotion and increased nitric oxide (NO) sensitivity in the EP4 KO DA suggest incomplete DA development. Analysis of DA maturity markers confirmed a partially immature EP4 KO DA phenotype. Together, our data suggest that EP4 signaling in late gestation plays a key developmental role in establishing a functional term DA. When disrupted in EP4 KO mice, the postnatal DA exhibits signaling and contractile properties characteristic of an immature DA, including impairments in the first, muscular phase of DA closure, in addition to known abnormalities in the second permanent remodeling phase.NEW & NOTEWORTHY EP4 is the primary EP receptor in the ductus arteriosus (DA) and is critical during late gestation for its development and eventual closure. The "paradoxical" patent DA (PDA) phenotype of EP4-knockout mice arises from a combination of impaired contractile potential, altered signaling properties, and a failure to remodel associated with an underdeveloped immature vessel. These findings provide new mechanistic insights into women who receive NSAIDs to treat preterm labor, whose infants have unexplained PDA.


Asunto(s)
Conducto Arterioso Permeable , Conducto Arterial , Ratones , Animales , Recién Nacido , Femenino , Embarazo , Humanos , Conducto Arterial/metabolismo , Dinoprostona/metabolismo , Subtipo EP4 de Receptores de Prostaglandina E/genética , Subtipo EP4 de Receptores de Prostaglandina E/metabolismo , Conducto Arterioso Permeable/genética , Ratones Noqueados
3.
Dev Dyn ; 251(3): 424-443, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34350653

RESUMEN

The ductus arteriosus (DA) is a unique fetal vascular shunt, which allows blood to bypass the developing lungs in utero. After birth, changes in complex signaling pathways lead to constriction and permanent closure of the DA. The persistent patency of the DA (PDA) is a common disorder in preterm infants, yet the underlying causes of PDA are not fully defined. Although limits on the availability of human DA tissues prevent comprehensive studies on the mechanisms of DA function, mouse models have been developed that reveal critical pathways in DA regulation. Over 20 different transgenic models of PDA in mice have been described, with implications for human DA biology. Similarly, we enumerate 224 human single-gene syndromes that are associated with PDA, including a small subset that consistently feature PDA as a prominent phenotype. Comparison and functional analyses of these genes provide insight into DA development and identify key regulatory pathways that may serve as potential therapeutic targets for the management of PDA.


Asunto(s)
Conducto Arterioso Permeable , Conducto Arterial , Animales , Modelos Animales de Enfermedad , Conducto Arterial/metabolismo , Conducto Arterioso Permeable/tratamiento farmacológico , Conducto Arterioso Permeable/etiología , Humanos , Recién Nacido , Recien Nacido Prematuro , Ratones
4.
Pediatr Res ; 87(6): 991-997, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31816622

RESUMEN

BACKGROUND: Indomethacin treatment for patent ductus arteriosus (PDA) is associated with acute kidney injury (AKI). Fenoldopam, a dopamine (DA) DA1-like receptor agonist dilates the renal vasculature and may preserve renal function during indomethacin treatment. However, limited information exists on DA receptor-mediated signaling in the ductus and fenoldopam may prevent ductus closure given its vasodilatory nature. METHODS: DA receptor expression in CD-1 mouse vessels was analyzed by qPCR and immunohistochemistry. Concentration-response curves were established using pressure myography. Pretreatment with SCH23390 (DA1-like receptor antagonist), phentolamine (α -adrenergic receptor antagonist) or indomethacin addressed mechanisms for DA-induced changes. Fenoldopam's effects on postnatal ductus closure were evaluated in vivo. RESULTS: DA1 receptors were expressed equally in ductus and aorta. High-dose DA induced modest vasoconstriction under newborn O2 conditions. Phentolamine inhibited DA-induced constriction, while SCH23390 augmented constriction, consistent with a vasodilatory role for DA1 receptors. Despite this, fenoldopam had little effect on ductus tone nor indomethacin- or O2-induced constriction and did not impair postnatal closure in vivo. CONCLUSION(S): DA receptors are present in the ductus but have limited physiologic effects. DA-induced ductus vasoconstriction is mediated via α-adrenergic pathways. The absence of DA1-mediated impairment of ductus closure supports the study of potential role for fenoldopam during PDA treatment.


Asunto(s)
Agonistas de Dopamina/farmacología , Dopamina/metabolismo , Conducto Arterioso Permeable/tratamiento farmacológico , Conducto Arterial/efectos de los fármacos , Fenoldopam/farmacología , Receptores de Dopamina D1/agonistas , Vasoconstricción/efectos de los fármacos , Vasodilatación/efectos de los fármacos , Vasodilatadores/farmacología , Animales , Conducto Arterial/metabolismo , Conducto Arterial/fisiopatología , Conducto Arterioso Permeable/metabolismo , Conducto Arterioso Permeable/fisiopatología , Femenino , Indometacina/toxicidad , Ratones , Oxígeno/toxicidad , Embarazo , Receptores de Dopamina D1/metabolismo , Transducción de Señal
5.
Am J Physiol Heart Circ Physiol ; 311(3): H572-81, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27371685

RESUMEN

Use of selective serotonin reuptake inhibitors (SSRIs) is common during pregnancy. Fetal exposure to SSRIs is associated with persistent pulmonary hypertension of the newborn (PPHN); however, a direct link between the two has yet to be established. Conversely, it is well known that PPHN can be caused by premature constriction of the ductus arteriosus (DA), a fetal vessel connecting the pulmonary and systemic circulations. We hypothesized that SSRIs could induce in utero DA constriction. Using isolated vessels and whole-animal models, we sought to determine the effects of two commonly prescribed SSRIs, fluoxetine and sertraline, on the fetal mouse DA. Cannulated vessel myography studies demonstrated that SSRIs caused concentration-dependent DA constriction and made vessels less sensitive to prostaglandin-induced dilation. Moreover, in vivo studies showed that SSRI-exposed mice had inappropriate DA constriction in utero. Taken together, these findings establish that SSRIs promote fetal DA constriction and provide a potential mechanism by which SSRIs could contribute to PPHN.


Asunto(s)
Conducto Arterial/efectos de los fármacos , Fluoxetina/farmacología , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Sertralina/farmacología , Vasoconstricción/efectos de los fármacos , Animales , Aorta/metabolismo , Conducto Arterial/metabolismo , Femenino , Inmunohistoquímica , Ratones , Miografía , Síndrome de Circulación Fetal Persistente , Embarazo , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Serotonina/genética , Receptores de Serotonina/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
6.
JCI Insight ; 8(5)2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36749647

RESUMEN

Based upon our demonstration that the smooth muscle cell-selective (SMC-selective) putative methyltransferase, Prdm6, interacts with myocardin-related transcription factor-A, we examined Prdm6's role in SMCs in vivo using cell type-specific knockout mouse models. Although SMC-specific depletion of Prdm6 in adult mice was well tolerated, Prdm6 depletion in Wnt1-expressing cells during development resulted in perinatal lethality and a completely penetrant patent ductus arteriosus (DA) phenotype. Lineage tracing experiments in Wnt1Cre2 Prdm6fl/fl ROSA26LacZ mice revealed normal neural crest-derived SMC investment of the outflow tract. In contrast, myography measurements on DA segments isolated from E18.5 embryos indicated that Prdm6 depletion significantly reduced DA tone and contractility. RNA-Seq analyses on DA and ascending aorta samples at E18.5 identified a DA-enriched gene program that included many SMC-selective contractile associated proteins that was downregulated by Prdm6 depletion. Chromatin immunoprecipitation-sequencing experiments in outflow tract SMCs demonstrated that 50% of the genes Prdm6 depletion altered contained Prdm6 binding sites. Finally, using several genome-wide data sets, we identified an SMC-selective enhancer within the Prdm6 third intron that exhibited allele-specific activity, providing evidence that rs17149944 may be the causal SNP for a cardiovascular disease GWAS locus identified within the human PRDM6 gene.


Asunto(s)
Conducto Arterioso Permeable , Conducto Arterial , Embarazo , Femenino , Ratones , Humanos , Animales , Conducto Arterioso Permeable/genética , Conducto Arterioso Permeable/metabolismo , Conducto Arterial/metabolismo , Miocitos del Músculo Liso/metabolismo , Regulación de la Expresión Génica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ratones Noqueados , Proteínas Represoras/genética
7.
bioRxiv ; 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36945623

RESUMEN

Background: In vascular smooth muscle cells (VSMCs), LRRC8A volume regulated anion channels (VRACs) are activated by inflammatory and pro-contractile stimuli including tumor necrosis factor alpha (TNFα), angiotensin II and stretch. LRRC8A physically associates with NADPH oxidase 1 (Nox1) and supports its production of extracellular superoxide (O 2 -• ). Methods and Results: Mice lacking LRRC8A exclusively in VSMCs (Sm22α-Cre, KO) were used to assess the role of VRACs in TNFα signaling and vasomotor function. KO mesenteric vessels contracted normally to KCl and phenylephrine, but relaxation to acetylcholine (ACh) and sodium nitroprusside (SNP) was enhanced compared to wild type (WT). 48 hours of ex vivo exposure to TNFα (10ng/ml) markedly impaired dilation to ACh and SNP in WT but not KO vessels. VRAC blockade (carbenoxolone, CBX, 100 µM, 20 min) enhanced dilation of control rings and restored impaired dilation following TNFα exposure. Myogenic tone was absent in KO rings. LRRC8A immunoprecipitation followed by mass spectroscopy identified 35 proteins that interacted with LRRC8A. Pathway analysis revealed actin cytoskeletal regulation as the most closely associated function of these proteins. Among these proteins, the Myosin Phosphatase Rho-Interacting protein (MPRIP) links RhoA, MYPT1 and actin. LRRC8A-MPRIP co-localization was confirmed by confocal imaging of tagged proteins, Proximity Ligation Assays, and IP/western blots which revealed LRRC8A binding at the second Pleckstrin Homology domain of MPRIP. siLRRC8A or CBX treatment decreased RhoA activity in cultured VSMCs, and MYPT1 phosphorylation at T853 was reduced in KO mesenteries suggesting that reduced ROCK activity contributes to enhanced relaxation. MPRIP was a target of redox modification, becoming oxidized (sulfenylated) after TNFα exposure. Conclusions: Interaction of Nox1/LRRC8A with MPRIP/RhoA/MYPT1/actin may allow redox regulation of the cytoskeleton and link Nox1 activation to both inflammation and vascular contractility.

8.
Semin Perinatol ; 42(4): 212-220, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29910032

RESUMEN

DA closure is crucial for the transition from fetal to neonatal life. This closure is supported by changes to the DA's signaling and structural properties that distinguish it from neighboring vessels. Examining transcriptional differences between these vessels is key to identifying genes or pathways responsible for DA closure. Several microarray studies have explored the DA transcriptome in animal models but varied experimental designs have led to conflicting results. Thorough transcriptomic analysis of the human DA has yet to be performed. A clear picture of the DA transcriptome is key to guiding future research endeavors, both to allow more targeted treatments in the clinical setting, and to understand the basic biology of DA function. In this review, we use a cross-species cross-platform analysis to consider all available published rodent microarray data and novel human RNAseq data in order to provide high priority candidate genes for consideration in future DA studies.


Asunto(s)
Conducto Arterial/fisiología , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Análisis por Micromatrices , Roedores/genética , Análisis de Secuencia de ARN , Animales , Animales Recién Nacidos , Conducto Arterial/patología , Embrión de Mamíferos , Estudios de Asociación Genética , Humanos , Modelos Animales , Especificidad de la Especie , Grado de Desobstrucción Vascular/fisiología
9.
PLoS One ; 10(9): e0138129, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26375667

RESUMEN

Food intake is an essential animal activity, regulated by neural circuits that motivate food localization, evaluate nutritional content and acceptance or rejection responses through the gustatory system, and regulate neuroendocrine feedback loops that maintain energy homeostasis. Excess food consumption in people is associated with obesity and metabolic and cardiovascular disorders. However, little is known about the genetic basis of natural variation in food consumption. To gain insights in evolutionarily conserved genetic principles that regulate food intake, we took advantage of a model system, Drosophila melanogaster, in which food intake, environmental conditions and genetic background can be controlled precisely. We quantified variation in food intake among 182 inbred, sequenced lines of the Drosophila melanogaster Genetic Reference Panel (DGRP). We found significant genetic variation in the mean and within-line environmental variance of food consumption and observed sexual dimorphism and genetic variation in sexual dimorphism for both food intake traits (mean and variance). We performed genome wide association (GWA) analyses for mean food intake and environmental variance of food intake (using the coefficient of environmental variation, CVE, as the metric for environmental variance) and identified molecular polymorphisms associated with both traits. Validation experiments using RNAi-knockdown confirmed 24 of 31 (77%) candidate genes affecting food intake and/or variance of food intake, and a test cross between selected DGRP lines confirmed a SNP affecting mean food intake identified in the GWA analysis. The majority of the validated candidate genes were novel with respect to feeding behavior, and many had mammalian orthologs implicated in metabolic diseases.


Asunto(s)
Biomarcadores/metabolismo , Drosophila melanogaster/genética , Ingestión de Alimentos/genética , Variación Genética/genética , Sitios de Carácter Cuantitativo , Animales , Drosophila melanogaster/metabolismo , Femenino , Estudio de Asociación del Genoma Completo , Masculino , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA