RESUMEN
Ex situ seed banking was first conceptualized and implemented in the early 20th century to maintain and protect crop lines. Today, ex situ seed banking is important for the preservation of heirloom strains, biodiversity conservation and ecosystem restoration, and diverse research applications. However, these efforts primarily target microalgae and terrestrial plants. Although some collections include macroalgae (i.e., seaweeds), they are relatively few and have yet to be connected via any international, coordinated initiative. In this piece, we provide a brief introduction to macroalgal germplasm banking and its application to conservation, industry, and mariculture. We argue that concerted effort should be made globally in germline preservation of marine algal species via germplasm banking with an overview of the technical advances for feasibility and ensured success.
Asunto(s)
Algas Marinas , Banco de Semillas , Acuicultura , Conservación de los Recursos Naturales , Ecosistema , Abastecimiento de Alimentos , Variación Genética , Células Germinativas de las Plantas/crecimiento & desarrollo , Cooperación Internacional , Algas Marinas/clasificación , Algas Marinas/genética , Algas Marinas/crecimiento & desarrolloRESUMEN
This study was designed to understand better if and how juvenile sporophytes of Macrocystis pyrifera can photoacclimate to high-light conditions when transplanted from 10 to 3 meters over 7 d. Acclimation of adult sporophytes to light regimes in the bathymetric gradient has been extensively documented. It primarily depends on photoacclimation and translocation of resources among blades. Among other physiological differences, juvenile sporophytes of M. pyrifera lack the structural complexity shown by adults. As such, juveniles may primarily depend on their photoacclimation capacities to maintain productivity and even avoid mortality under changing light regimes. However, little is known about how these mechanisms operate in young individuals. The capacity of sporophytes to photoacclimate was assessed by examining changes in their photosynthetic performance, pigment content, and bio-optical properties of the blade. Sporophytes nutritional status and oxidative damage were also determined. Results showed that juvenile sporophytes transplanted to shallow water were able to regulate light harvesting by reducing pigment concentration, and thus, absorptance and photosynthetic efficiency. Also, shallow-water sporophytes notably enhanced the dissipation of light energy as heat (NPQ) as a photoprotective mechanism. Generally, these adjustments allowed sporophytes to manage the absorption and utilization of light energy, hence reducing the potential for photo-oxidative damage. Furthermore, no substantial changes were found in the internal reserves (i.e., soluble carbohydrates and nitrogen) of these sporophytes. To our knowledge, these results are the first to provide robust evidence of photoprotective and photoacclimation strategies in juveniles of M. pyrifera, allowing them to restrict or avoid photodamage during shallow-water cultivation.
Asunto(s)
Macrocystis , Aclimatación , Nitrógeno , Fotosíntesis , AguaRESUMEN
Porphyra umbilicalis (laver) belongs to an ancient group of red algae (Bangiophyceae), is harvested for human food, and thrives in the harsh conditions of the upper intertidal zone. Here we present the 87.7-Mbp haploid Porphyra genome (65.8% G + C content, 13,125 gene loci) and elucidate traits that inform our understanding of the biology of red algae as one of the few multicellular eukaryotic lineages. Novel features of the Porphyra genome shared by other red algae relate to the cytoskeleton, calcium signaling, the cell cycle, and stress-tolerance mechanisms including photoprotection. Cytoskeletal motor proteins in Porphyra are restricted to a small set of kinesins that appear to be the only universal cytoskeletal motors within the red algae. Dynein motors are absent, and most red algae, including Porphyra, lack myosin. This surprisingly minimal cytoskeleton offers a potential explanation for why red algal cells and multicellular structures are more limited in size than in most multicellular lineages. Additional discoveries further relating to the stress tolerance of bangiophytes include ancestral enzymes for sulfation of the hydrophilic galactan-rich cell wall, evidence for mannan synthesis that originated before the divergence of green and red algae, and a high capacity for nutrient uptake. Our analyses provide a comprehensive understanding of the red algae, which are both commercially important and have played a major role in the evolution of other algal groups through secondary endosymbioses.
Asunto(s)
Citoesqueleto/genética , Evolución Molecular , Genoma de Planta/genética , Porphyra/citología , Porphyra/genética , Actinas/genética , Señalización del Calcio/genética , Ciclo Celular/genética , Pared Celular/genética , Pared Celular/metabolismo , Cromatina/genética , Cinesinas/genética , FilogeniaRESUMEN
Large-scale seaweed cultivation has been instrumental in globalizing the seaweed industry since the 1950s. The domestication of seaweed cultivars (begun in the 1940s) ended the reliance on natural cycles of raw material availability for some species, with efforts driven by consumer demands that far exceeded the available supplies. Currently, seaweed cultivation is unrivaled in mariculture with 94% of annual seaweed biomass utilized globally being derived from cultivated sources. In the last decade, research has confirmed seaweeds as rich sources of potentially valuable, health-promoting compounds. Most existing seaweed cultivars and current cultivation techniques have been developed for producing commoditized biomass, and may not necessarily be optimized for the production of valuable bioactive compounds. The future of the seaweed industry will include the development of high value markets for functional foods, cosmeceuticals, nutraceuticals, and pharmaceuticals. Entry into these markets will require a level of standardization, efficacy, and traceability that has not previously been demanded of seaweed products. Both internal concentrations and composition of bioactive compounds can fluctuate seasonally, geographically, bathymetrically, and according to genetic variability even within individual species, especially where life history stages can be important. History shows that successful expansion of seaweed products into new markets requires the cultivation of domesticated seaweed cultivars. Demands of an evolving new industry based upon efficacy and standardization will require the selection of improved cultivars, the domestication of new species, and a refinement of existing cultivation techniques to improve quality control and traceability of products.
RESUMEN
The objective of this study is to investigate the effect of nano-plastics (NPs) on the growth, photosynthesis, oxidative stress and antioxidant enzymes in Grateloupia turuturu and Chondrus ocellatus. Difference of surface characteristics between G. turuturu and C. ocellatus may affect adherence of plastics to their surface. The seaweed samples were cultivated at 5 different NP concentrations (0, 20, 200, 2000, 20000 ng/L) for 21 days. The accumulation of nano-plastics on surface of C. ocellatus was higher than that of G. turuturu. The highest concentration of NPs (20000 ng/L) inhibited the growth and photosynthesis activity of C. ocellatus. At the same concentrations, oxidative stress was caused with increase of antioxidant enzyme activities. G. turuturu was not affected by NPs at all tested concentrations. Based on these results, toxic effects of nano-plastics may be species specific. Toxicity is dependent on the capacity of macroalgae to accumulate nano-plastics on their surface.
RESUMEN
Copious amounts of methane, a major constituent of greenhouse gases currently driving climate change, are emitted by livestock, and efficient methods that curb such emissions are urgently needed to reduce global warming. When fed to cows, the red seaweed Asparagopsis taxiformis (AT) can reduce enteric methane emissions by up to 80%, but the achieved results can vary widely. Livestock produce methane as a byproduct of methanogenesis, which occurs during the breakdown of feed by microbes in the rumen. The ruminant microbiome is a diverse ecosystem comprising bacteria, protozoa, fungi, and archaea, and methanogenic archaea work synergistically with bacteria to produce methane. Here, we find that an effective reduction in methane emission by high-dose AT (0.5% dry matter intake) was associated with a reduction in methanol-utilizing Methanosphaera within the rumen, suggesting that they may play a greater role in methane formation than previously thought. However, a later spike in Methanosphaera suggested an acquired resistance, possibly via the reductive dehalogenation of bromoform. While we found that AT inhibition of methanogenesis indirectly impacted ruminal bacteria and fermentation pathways due to an increase in spared H2, we also found that an increase in butyrate synthesis was due to a direct effect of AT on butyrate-producing bacteria such as Butyrivibrio, Moryella, and Eubacterium. Together, our findings provide several novel insights into the impact of AT on both methane emissions and the microbiome, thereby elucidating additional pathways that may need to be targeted to maintain its inhibitory effects while preserving microbiome health and animal productivity. IMPORTANCE: Livestock emits copious quantities of methane, a major constituent of the greenhouse gases currently driving climate change. Methanogens within the bovine rumen produce methane during the breakdown of feed. While the red seaweed Asparagopsis taxiformis (AT) can significantly reduce methane emissions when fed to cows, its effects appear short-lived. This study revealed that the effective reduction of methane emissions by AT was accompanied by the near-total elimination of methane-generating Methanosphaera. However, Methanosphaera populations subsequently rebounded due to their ability to inactivate bromoform, a major inhibitor of methane formation found in AT. This study presents novel findings on the contribution of Methanosphaera to ruminal methanogenesis, the mode of action of AT, and the possibility for complementing different strategies to effectively curb methane emissions.
Asunto(s)
Metano , Rumen , Animales , Metano/metabolismo , Bovinos , Rumen/microbiología , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/genética , Microbioma Gastrointestinal , Microbiota , Archaea/metabolismo , Archaea/clasificación , Archaea/genética , Algas Marinas/metabolismo , Rhodophyta/metabolismo , Alimentación Animal/análisis , FermentaciónRESUMEN
Membrane transporters play a central role in many cellular processes that rely on the movement of ions and organic molecules between the environment and the cell, and between cellular compartments. Transporters have been well characterized in plants and green algae, but little is known about transporters or their evolutionary histories in the red algae. Here we examined 482 expressed sequence tag contigs that encode putative membrane transporters in the economically important red seaweed Porphyra (Bangiophyceae, Rhodophyta). These contigs are part of a comprehensive transcriptome dataset from Porphyra umbilicalis and Porphyra purpurea. Using phylogenomics, we identified 30 trees that support the expected monophyly of red and green algae/plants (i.e. the Plantae hypothesis) and 19 expressed sequence tag contigs that show evidence of endosymbiotic/horizontal gene transfer involving stramenopiles. The majority (77%) of analyzed contigs encode transporters with unresolved phylogenies, demonstrating the difficulty in resolving the evolutionary history of genes. We observed molecular features of many sodium-coupled transport systems in marine algae, and the potential for coregulation of Porphyra transporter genes that are associated with fatty acid biosynthesis and intracellular lipid trafficking. Although both the tissue-specific and subcellular locations of the encoded proteins require further investigation, our study provides red algal gene candidates associated with transport functions and novel insights into the biology and evolution of these transporters.
Asunto(s)
Eucariontes/genética , Transferencia de Gen Horizontal/genética , Proteínas de Transporte de Membrana/genética , Fotosíntesis/genética , Porphyra/genética , Sodio/metabolismo , Acuaporinas/metabolismo , Transporte Biológico/genética , Señalización del Calcio/genética , Evolución Molecular , Etiquetas de Secuencia Expresada , Agua Dulce , Genes , Transporte Iónico/genética , Metabolismo de los Lípidos/genética , Proteínas de Transporte de Membrana/metabolismo , Datos de Secuencia Molecular , Nitratos/metabolismo , Filogenia , Compuestos de Amonio Cuaternario/metabolismo , Agua de Mar , Transcriptoma/genéticaRESUMEN
The response of seaweeds to environmental stressors can be population-specific, and be related to the regime of their habitats. To explore the growth and physiological responses of Ulva prolifera, two strains of this alga (Korean and Chinese strains) were studied under an interaction of temperature (20 and 25 °C), nutrients (low nutrients: 50 µM of nitrate and 5 µM of phosphate; high nutrients: 500 µM of nitrate and 50 µM of phosphate) and salinity (20, 30 and 40 psu). The lowest growth rates of both strains were observed at 40 psu of salinity, independent of temperature and nutrient levels. At 20 °C and low nutrients condition, the carbon: nitrogen (C: N) ratio and growth rate in the Chinese strain were increased by 31.1% and 21.1% at a salinity of 20 psu in comparison to the salinity of 30 psu, respectively. High nutrients decreased the ratio of C:N in both strains with increasing tissue N content. At the same time, high nutrients also increased soluble protein and pigments contents, as well as photosynthetic and growth rates in both strains at the same salinity levels at 20 °C. Under 20 °C and high nutrients conditions, the growth rates and C:N ratio of both strains were significantly decreased with increasing salinity. The pigment, soluble protein and tissue N showed an inverse trend with the growth rate at all conditions. Moreover, the higher temperature of 25 °C inhibited the growth in both strains regardless of nutrients levels. The temperature of 25 °C enhanced the contents of tissue N and pigments in the Chinese strain only at the low nutrients level. The interaction of high nutrients and 25 °C led to the accumulation of tissue N and pigment contents in both strains under all salinity conditions compared to the 20 °C and high nutrients level. The temperature of 25 °C and high nutrients decreased the growth rate in the Chinese strain at both salinities of 30 and 40 psu more than the 20 °C, and low nutrients level at the same salinity. These results suggest that the Ulva blooms caused by the Chinese strain were more impacted at hypo-salinity levels compared to the Korean strain. Eutrophic or high nutrients level enhanced the salinity tolerance in both strains of U. prolifera. There will be a decline of U. prolifera blooms of the Chinese strain at hyper-salinity levels.
Asunto(s)
Ulva , Temperatura , Ulva/fisiología , Tolerancia a la Sal , Nitratos/metabolismo , Nutrientes , Fosfatos/metabolismoRESUMEN
Plastics are the most abundant marine litter in the world's oceans and can be degraded into micro-plastics. These emerging pollutants negatively affect marine organisms, but little is known on the effects on macroalgae. In this study, we investigated the effects of micro-plastics on two species of red algae: Grateloupia turuturu and Chondrus sp. Grateloupia turuturu has a slippery surface while Chondrus sp. has a rough surface. Different surface characteristics of these macroalgae may affect adherence of micro-plastics. Both species were exposed to 5 different concentrations (0, 20, 200, 2000 and 20,000 ng/L) of polystyrene microspheres. Adherence capacity, accumulating micro-plastics on the surface was higher for Chondrus sp. than G. turuturu. Chondrus sp. at 20,000 ng/L only showed a decrease in growth rate and photosynthesis activity, and an increase of reactive oxygen species (ROS). However, G. turuturu was not significantly affected by micro-plastics at all tested concentrations. Shaded light and inhibition of gas flow by adhered micro-plastics may be a reason for the reduction of growth and photosynthesis and production of ROS. Based on this result, the toxic effects of micro-plastics appear to be species specific, dependent on the adherence capacity of macroalgae.
Asunto(s)
Chondrus , Rhodophyta , Algas Marinas , Contaminantes Químicos del Agua , Plásticos , Microplásticos , Especies Reactivas de Oxígeno , Contaminantes Químicos del Agua/toxicidadRESUMEN
Sargassum horneri is a major bloom forming species in Korea and China. It is important to find a way to utilize the huge biomass of Sargassum horneri in the region. Seaweed-derived biostimulants are primarily derived from brown algae and are known to improve terrestrial crop growth and tolerance to abiotic stresses. Neopyropia yezoensis is the most important seaweed cultured species in Korea, and research is required to increase heat resistance as a solution against climate change. In this study, various extraction methods were used to obtain Sargassum horneri extract, and it was applied to Neopyropia yezoensis to evaluate the effect on physiological activity. Metabolites of Sargassum horneri were extracted by using four different methods: boiling (SBE), soaking (SSE), autoclaving (SAE) and ethanol (SEE). The SBE, SSE and SAE derived extracts showed increased tolerance to high-temperature stress that had inhibited the growth of Neopyropia yezoensis, and show improved growth compared to the control group. The SBE and SSE extraction methods improved the content of phycobiliprotein, but also the SBE increased superoxide dismutase (SOD) activity. Based on the results of this study, the boiling extraction method appears to be the most suitable method for the extraction of plants stimulants from Sargassum horneri.
Asunto(s)
Phaeophyceae , Rhodophyta , Sargassum , Algas Marinas , China , Sargassum/fisiología , Algas Marinas/metabolismoRESUMEN
Though Saccharina japonica cultivation has been established for many decades in East Asian countries, the domestication process of sugar kelp (Saccharina latissima) in the Northeast United States is still at its infancy. In this study, by using data from our breeding experience, we will demonstrate how obstacles for accelerated genetic gain can be assessed using simulation approaches that inform resource allocation decisions. Thus far, we have used 140 wild sporophytes that were sampled in 2018 from the northern Gulf of Maine to southern New England. From these sporophytes, we sampled gametophytes and made and evaluated over 600 progeny sporophytes from crosses among the gametophytes in 2019 and 2020. The biphasic life cycle of kelp gives a great advantage in selective breeding as we can potentially select both on the sporophytes and gametophytes. However, several obstacles exist, such as the amount of time it takes to complete a breeding cycle, the number of gametophytes that can be maintained in the laboratory, and whether positive selection can be conducted on farm-tested sporophytes. Using the Gulf of Maine population characteristics for heritability and effective population size, we simulated a founder population of 1,000 individuals and evaluated the impact of overcoming these obstacles on rate of genetic gain. Our results showed that key factors to improve current genetic gain rely mainly on our ability to induce reproduction of the best farm-tested sporophytes, and to accelerate the clonal vegetative growth of released gametophytes so that enough gametophyte biomass is ready for making crosses by the next growing season. Overcoming these challenges could improve rates of genetic gain more than 2-fold. Future research should focus on conditions favorable for inducing spring reproduction, and on increasing the amount of gametophyte tissue available in time to make fall crosses in the same year.
Asunto(s)
Kelp , Phaeophyceae , Células Germinativas de las Plantas , Humanos , Kelp/genética , Fitomejoramiento , AzúcaresRESUMEN
Saccharina latissima (sugar kelp) is one of the most widely cultivated brown marine macroalgae species in the North Atlantic and the eastern North Pacific Oceans. To meet the expanding demands of the sugar kelp mariculture industry, selecting and breeding sugar kelp that is best suited to offshore farm environments is becoming necessary. To that end, a multi-year, multi-institutional breeding program was established by the U.S. Department of Energy's (DOE) Advanced Research Projects Agency-Energy (ARPA-E) Macroalgae Research Inspiring Novel Energy Resources (MARINER) program. Hybrid sporophytes were generated using 203 unique gametophyte cultures derived from wild-collected Saccharina spp. for two seasons of farm trials (2019-2020 and 2020-2021). The wild sporophytes were collected from 10 different locations within the Gulf of Maine (USA) region, including both sugar kelp (Saccharina latissima) and the skinny kelp species (Saccharina angustissima). We harvested 232 common farm plots during these two seasons with available data. We found that farmed kelp plots with skinny kelp as parents had an average increased yield over the mean (wet weight 2.48 ± 0.90 kg m-1 and dry weight 0.32 ± 0.10 kg m-1) in both growing seasons. We also found that blade length positively correlated with biomass in skinny kelp x sugar kelp crosses or pure sugar kelp crosses. The skinny x sugar progenies had significantly longer and narrower blades than the pure sugar kelp progenies in both seasons. Overall, these findings suggest that sugar x skinny kelp crosses provide improved yield compared to pure sugar kelp crosses. Supplementary Information: The online version contains supplementary material available at 10.1007/s10811-022-02811-1.
RESUMEN
Large-scale Sargassum blooms have been increasingly observed in coastal zones in recent years. Sargassum horneri (Turner) C. Agardh blooms (pelagic) have been observed in Jeju Island (Korea) and the southwest of the Korean Peninsula, causing serious problems for seaweed and abalone farms as well as for fisheries, tourism and recreational industries. The present study explored the physiological responses of attached and pelagic S. horneri populations cultivated under different nutrient concentrations (HN: 50 µM of nitrogen and 5 µM of phosphorus; LN: 5 µM of nitrogen and 0.5 µM of phosphorus) and photosynthetically active radiation (PAR) (H-PAR: 250; M-PAR: 150; L-PAR: 50 µmol photons m-2 s-1) for 25 days. Relative growth rates (RGR) were significantly lower in the pelagic population than that in the attached population. All thalli from the pelagic population died within 20 days. Chlorophyll a and c, and carotenoids were significantly higher at HN than at LN, and decreased as PAR increased for both populations. For the attached population, photosynthetic rate, tissue nitrogen, and carbon and nitrogen removal were also significantly higher at HN than at LN. These results suggest that high nutrient and lower PAR increased the biomass accumulation of attached populations in coastal areas. Nutrient limitation and high PAR may accelerate senescence of the pelagic populations while traveling on the sea surface from their point of origin.
Asunto(s)
Sargassum , Algas Marinas , Clorofila A , Explotaciones Pesqueras , NutrientesRESUMEN
Enteric methane emissions are the single largest source of direct greenhouse gas emissions (GHG) in beef and dairy value chains and a substantial contributor to anthropogenic methane emissions globally. In late 2019, the World Wildlife Fund (WWF), the Advanced Research Projects Agency-Energy (ARPA-E) and the Foundation for Food and Agriculture Research (FFAR) convened approximately 50 stakeholders representing research and production of seaweeds, animal feeds, dairy cattle, and beef and dairy foods to discuss challenges and opportunities associated with the use of seaweed-based ingredients to reduce enteric methane emissions. This Perspective article describes the considerations identified by the workshop participants and suggests next steps for the further development and evaluation of seaweed-based feed ingredients as enteric methane mitigants. Although numerous compounds derived from sources other than seaweed have been identified as having enteric methane mitigation potential, these mitigants are outside the scope of this article.
RESUMEN
The bioremediation capability and efficiency of large-scale Porphyra cultivation in the removal of inorganic nitrogen and phosphorus from open sea area were studied. The study took place in 2002-2004, in a 300 ha nori farm along the Lusi coast, Qidong County, Jiangsu Province, China, where the valuable rhodophyte seaweed Porphyra yezoensis has been extensively cultivated. Nutrient concentrations were significantly reduced by the seaweed cultivation. During the non-cultivation period of P. yezoensis, the concentrations of NH4-N, NO2-N, NO3-N and PO4-P were 43-61, 1-3, 33-44 and 1-3 micromol L(-1), respectively. Within the Porphyra cultivation area, the average nutrient concentrations during the Porphyra cultivation season were 20.5, 1.1, 27.9 and 0.96 micromol L(-1) for NH4-N, NO2-N, NO3-N and PO4-P, respectively, significantly lower than in the non-cultivation season (p<0.05). Compared with the control area, Porphyra farming resulted in the reduction of NH4-N, NO2-N, NO3-N and PO4-P by 50-94%, 42-91%, 21-38% and 42-67%, respectively. Nitrogen and phosphorus contents in dry Porphyra thalli harvested from the Lusi coast averaged 6.3% and 1.0%, respectively. There were significant monthly variations in tissue nitrogen content (p<0.05) but not in tissue phosphorus content (p>0.05). The highest tissue nitrogen content, 7.65% in dry wt, was found in December and the lowest value, 4.85%, in dry wt, in April. The annual biomass production of P. yezoensis was about 800 kg dry wt ha(-1) at the Lusi Coast in 2003-2004. An average of 14708.5 kg of tissue nitrogen and 2373.5 kg of tissue phosphorus in P. yezoensis biomass were harvested annually from 300 ha of cultivation from Lusi coastal water. These results indicated that Porphyra efficiently removed excess nutrient from nearshore eutrophic coastal areas. Therefore, large-scale cultivation of P. yezoensis could alleviate eutrophication in coastal waters economically.
Asunto(s)
Nitrógeno/metabolismo , Fósforo/metabolismo , Porphyra/metabolismo , Contaminantes Químicos del Agua/metabolismo , Biodegradación Ambiental , Eutrofización , Nitratos/análisis , Nitratos/metabolismo , Nitritos/análisis , Nitritos/metabolismo , Nitrógeno/análisis , Fósforo/análisis , Compuestos de Amonio Cuaternario/análisis , Compuestos de Amonio Cuaternario/metabolismo , Agua de Mar/análisis , Contaminantes Químicos del Agua/análisisRESUMEN
[This corrects the article DOI: 10.1371/journal.pone.0199287.].
RESUMEN
This work developed a laboratory prototype methodology for cost-effective, water-sparing drip-irrigation of seaweeds, as a model for larger-scale, on-land commercial units, which we envision as semi-automated, inexpensive polyethylene sheet-covered bow-framed greenhouses with sloping plastic covered floors, water-collecting sumps, and pumped recycling of culture media into overhead low-pressure drip emitters. Water droplets form on the continually wetted interior plastic surfaces of these types of greenhouses scattering incoming solar radiation to illuminate around and within the vertically-stacked culture platforms. Concentrated media formulations applied through foliar application optimize nutrient uptake by the seaweeds to improve growth and protein content of the cultured biomass. An additional attribute is that seaweed growth can be accelerated by addition of anthropogenic CO2-containing industrial flue gases piped into the head-space of the greenhouse to reuse and recycle CO2 into useful algal biomass. This demonstration tested three different drip culture platform designs (horizontal, vertical and slanted) and four increasing fertilizer media concentrations (in seawater) for growth, areal productivity, and thallus protein content of wild-collected Ulva compressa biomass, against fully-submerged controls. Cool White fluorescent lights provided 150-200 µmol photon m-2 s-1 illumination on a 12/12 hr day/night cycle. Interactive effects we tested using a four-level single factorial randomized block framework (p<0.05). Growth rates and biomass of the drip irrigation designs were 3-9% day-1 and 5-18 g m-2 day-1 (d.w.) respectively, whereas the fully-submerged control group grew better at 8-11% per day with of 20-30 g m-2 day-1, indicating further optimization of the drip irrigation methodology is needed to improve growth and biomass production. Results demonstrated that protein content of Ulva biomass grown using the vertically-oriented drip culture platform and 2x fertilizer concentrations (42:16:36 N:P:K) was 27% d.w., approximating the similarly-fertilized control group. The drip methodology was found to significantly improve gas and nutrient mass transfer through the seaweed thalli, and overall, the labor- and-energy-saving methodology would use a calculated 20% of the seawater required for conventional on-land tank-based tumble culture.
RESUMEN
Since 2007, Ulva macroalgal blooms have occurred along the coastal areas of the Yellow Sea, China. These blooms are dominated by fragments of Ulva prolifera in the early stages of development. The objectives of this study were to identify the primary mode of asexual reproduction for U. prolifera and to evaluate the contribution of these thalli fragments to the formation of blooms. Four different growth and reproductive strategies of U. prolifera segments were found including: 1) tubular diameter becoming larger; 2) formation of new branches; 3) release of zoids; and 4) polarized growth. This is the first report showing the development of numerous blade-lets from a single segment, which is remarkably different from previous studies on other Ulva species. The results in the present study provide critical information to understand how this species is able to support its explosive growth during a bloom.
Asunto(s)
Eutrofización , Reproducción Asexuada , Algas Marinas/crecimiento & desarrollo , Ulva/crecimiento & desarrollo , China , Océanos y MaresRESUMEN
From 2008 to 2016, massive floating green macroalgal blooms occurred annually during the summer months in the Yellow Sea. The original source of these blooms was traced based on the spatio-temporal distribution and species composition of Ulva microscopic propagules and settled Ulva vegetative thalli monthly from December 2012 to May 2013 in the Yellow Sea. High quantities of Ulva microscopic propagules in both the water column and sediments were found in the Pyropia aquaculture area along the Jiangsu coast before a green macroalgal bloom appeared in the Yellow Sea. The abundance of Ulva microscopic propagules was significantly lower in outer areas compared to in Pyropia aquaculture areas. A molecular phylogenetic analysis suggested that Ulva prolifera microscopic propagules were the dominant microscopic propagules present during the study period. The extremely low biomass of settled Ulva vegetative thalli along the coast indicated that somatic cells of settled Ulva vegetative thalli did not provide a propagule bank for the green macroalgal blooms in the Yellow Sea. The results of this study provide further supporting evidence that the floating green macroalgal blooms originate from green macroalgae attached to Pyropia aquaculture rafts along the Jiangsu coastline of the southern Yellow Sea.
Asunto(s)
Eutrofización/fisiología , Filogenia , Ulva/fisiología , Acuicultura , China , Monitoreo del Ambiente , Océanos y Mares , Ulva/genéticaRESUMEN
Green algal blooms have occurred in the Yellow Sea for seven consecutive years from 2007 to 2013. In this study, satellite image analysis and field shipboard observations indicated that the Ulva blooms in 2013 originated in the Rudong coast. The spatial distribution of Ulva microscopic propagules in the Southern Yellow Sea also supported that the blooms originated in the Rudong coast. In addition, multi-source satellite data were used to evaluate the biomass of green algae on the Pyropia aquaculture rafts. The results showed that approximately 2784 tons of Ulva prolifera were attached to the rafts and possessed the same internal transcribed spacer and 5S rDNA sequence as the dominant species in the 2013 blooms. We conclude that the significant biomass of Ulva species on the Pyropia rafts during the harvesting season in radial tidal sand ridges played an important role in the rapid development of blooms in the Yellow Sea.