Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 598(7880): 332-337, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34616040

RESUMEN

Humans have co-evolved with a dense community of microbial symbionts that inhabit the lower intestine. In the colon, secreted mucus creates a barrier that separates these microorganisms from the intestinal epithelium1. Some gut bacteria are able to utilize mucin glycoproteins, the main mucus component, as a nutrient source. However, it remains unclear which bacterial enzymes initiate degradation of the complex O-glycans found in mucins. In the distal colon, these glycans are heavily sulfated, but specific sulfatases that are active on colonic mucins have not been identified. Here we show that sulfatases are essential to the utilization of distal colonic mucin O-glycans by the human gut symbiont Bacteroides thetaiotaomicron. We characterized the activity of 12 different sulfatases produced by this species, showing that they are collectively active on all known sulfate linkages in O-glycans. Crystal structures of three enzymes provide mechanistic insight into the molecular basis of substrate specificity. Unexpectedly, we found that a single sulfatase is essential for utilization of sulfated O-glycans in vitro and also has a major role in vivo. Our results provide insight into the mechanisms of mucin degradation by a prominent group of gut bacteria, an important process for both normal microbial gut colonization2 and diseases such as inflammatory bowel disease3.


Asunto(s)
Bacteroides/enzimología , Colon/metabolismo , Colon/microbiología , Microbioma Gastrointestinal , Mucinas/metabolismo , Sulfatasas/metabolismo , Acetilgalactosamina/química , Acetilgalactosamina/metabolismo , Animales , Colon/química , Cristalografía por Rayos X , Femenino , Galactosa/metabolismo , Humanos , Masculino , Ratones , Modelos Moleculares , Especificidad por Sustrato , Sulfatasas/química
2.
Nat Chem Biol ; 18(8): 841-849, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35710619

RESUMEN

Sulfated glycans are ubiquitous nutrient sources for microbial communities that have coevolved with eukaryotic hosts. Bacteria metabolize sulfated glycans by deploying carbohydrate sulfatases that remove sulfate esters. Despite the biological importance of sulfatases, the mechanisms underlying their ability to recognize their glycan substrate remain poorly understood. Here, we use structural biology to determine how sulfatases from the human gut microbiota recognize sulfated glycans. We reveal seven new carbohydrate sulfatase structures spanning four S1 sulfatase subfamilies. Structures of S1_16 and S1_46 represent novel structures of these subfamilies. Structures of S1_11 and S1_15 demonstrate how non-conserved regions of the protein drive specificity toward related but distinct glycan targets. Collectively, these data reveal that carbohydrate sulfatases are highly selective for the glycan component of their substrate. These data provide new approaches for probing sulfated glycan metabolism while revealing the roles carbohydrate sulfatases play in host glycan catabolism.


Asunto(s)
Microbioma Gastrointestinal , Sulfatasas , Bacterias/metabolismo , Humanos , Polisacáridos/química , Sulfatasas/química , Sulfatos/química
3.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731888

RESUMEN

The interaction of heparin with antithrombin (AT) involves a specific sequence corresponding to the pentasaccharide GlcNAc/NS6S-GlcA-GlcNS3S6S-IdoA2S-GlcNS6S (AGA*IA). Recent studies have revealed that two AGA*IA-containing hexasaccharides, which differ in the sulfation degree of the iduronic acid unit, exhibit similar binding to AT, albeit with different affinities. However, the lack of experimental data concerning the molecular contacts between these ligands and the amino acids within the protein-binding site prevents a detailed description of the complexes. Differential epitope mapping (DEEP)-STD NMR, in combination with MD simulations, enables the experimental observation and comparison of two heparin pentasaccharides interacting with AT, revealing slightly different bound orientations and distinct affinities of both glycans for AT. We demonstrate the effectiveness of the differential solvent DEEP-STD NMR approach in determining the presence of polar residues in the recognition sites of glycosaminoglycan-binding proteins.


Asunto(s)
Antitrombinas , Heparina , Oligosacáridos , Humanos , Antitrombinas/química , Antitrombinas/metabolismo , Sitios de Unión , Mapeo Epitopo/métodos , Heparina/química , Heparina/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Simulación de Dinámica Molecular , Oligosacáridos/química , Oligosacáridos/metabolismo , Unión Proteica , Solventes/química
4.
Glia ; 71(7): 1683-1698, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36945189

RESUMEN

There is an urgent need for therapies that target the multicellular pathology of central nervous system (CNS) disease. Modified, nonanticoagulant heparins mimic the heparan sulfate glycan family and are known regulators of multiple cellular processes. In vitro studies have demonstrated that low sulfated modified heparin mimetics (LS-mHeps) drive repair after CNS demyelination. Herein, we test LS-mHep7 (an in vitro lead compound) in experimental autoimmune encephalomyelitis (EAE) and cuprizone-induced demyelination. In EAE, LS-mHep7 treatment resulted in faster recovery and rapidly reduced inflammation which was accompanied by restoration of animal weight. LS-mHep7 treatment had no effect on remyelination or on OLIG2 positive oligodendrocyte numbers within the corpus callosum in the cuprizone model. Further in vitro investigation confirmed that LS-mHep7 likely mediates its pro-repair effect in the EAE model by sequestering inflammatory cytokines, such as CCL5 which are upregulated during immune-mediated inflammatory attacks. These data support the future clinical translation of this next generation modified heparin as a treatment for CNS diseases with active immune system involvement.


Asunto(s)
Enfermedades del Sistema Nervioso Central , Encefalomielitis Autoinmune Experimental , Animales , Ratones , Cuprizona/toxicidad , Sulfatos/efectos adversos , Oligodendroglía/patología , Encefalomielitis Autoinmune Experimental/inducido químicamente , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/patología , Cuerpo Calloso/patología , Enfermedades del Sistema Nervioso Central/patología , Heparitina Sulfato/uso terapéutico , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Vaina de Mielina/patología
5.
J Virol ; 96(19): e0112222, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36121298

RESUMEN

Zika virus (ZIKV) is an arbovirus member of the Flaviviridae family that causes severe congenital brain anomalies in infected fetuses. The key target cells of ZIKV infection, human neural progenitor cells (hNPCs), are highly permissive to infection that causes the inhibition of cell proliferation and induces cell death. We have previously shown that pharmaceutical-grade heparin inhibits virus-induced cell death with negligible effects on in vitro virus replication in ZIKV-infected hNPCs at the "high" multiplicity of infection (MOI) of 1. Here, we show that heparin inhibits formation of ZIKV-induced intracellular vacuoles, a signature of paraptosis, and inhibits necrosis and apoptosis of hNPCs grown as neurospheres (NS). To test whether heparin preserved the differentiation of ZIKV-infected hNPCs into neuroglial cells, hNPCs were infected at the MOI of 0.001. In this experimental condition, heparin inhibited ZIKV replication by ca. 2 log10, mostly interfering with virion attachment, while maintaining its protective effect against ZIKV-induced cytopathicity. Heparin preserved differentiation into neuroglial cells of hNPCs that were obtained from either human-induced pluripotent stem cells (hiPSC) or by fetal tissue. Quite surprisingly, multiple additions of heparin to hNPCs enabled prolonged virus replication while preventing virus-induced cytopathicity. Collectively, these results highlight the potential neuroprotective effect of heparin that could serve as a lead compound to develop novel agents for preventing the damage of ZIKV infection on the developing brain. IMPORTANCE ZIKV is a neurotropic virus that invades neural progenitor cells (NPCs), causing inhibition of their proliferation and maturation into neurons and glial cells. We have shown previously that heparin, an anticoagulant also used widely during pregnancy, prevents ZIKV-induced cell death with negligible inhibition of virus replication. Here, we demonstrate that heparin also exerts antiviral activity against ZIKV replication using a much lower infectious inoculum. Moreover, heparin interferes with different modalities of virus-induced cell death. Finally, heparin-induced prevention of virus-induced NPC death allows their differentiation into neuroglial cells despite the intracellular accumulation of virions. These results highlight the potential use of heparin, or pharmacological agents derived from it, in pregnant women to prevent the devastating effects of ZIKV infection on the developing brain of their fetuses.


Asunto(s)
Heparina , Células-Madre Neurales , Fármacos Neuroprotectores , Virus Zika , Anticoagulantes/farmacología , Antivirales/farmacología , Muerte Celular/efectos de los fármacos , Diferenciación Celular , Heparina/farmacología , Humanos , Células-Madre Neurales/citología , Células-Madre Neurales/virología , Neuroglía/citología , Neuroglía/virología , Fármacos Neuroprotectores/farmacología , Replicación Viral , Virus Zika/efectos de los fármacos , Virus Zika/fisiología , Infección por el Virus Zika/tratamiento farmacológico
6.
Chemistry ; 29(1): e202202599, 2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36134621

RESUMEN

Infection of host cells by SARS-CoV-2 begins with recognition by the virus S (spike) protein of cell surface heparan sulfate (HS), tethering the virus to the extracellular matrix environment, and causing the subunit S1-RBD to undergo a conformational change into the 'open' conformation. These two events promote the binding of S1-RBD to the angiotensin converting enzyme 2 (ACE2) receptor, a preliminary step toward viral-cell membrane fusion. Combining ligand-based NMR spectroscopy with molecular dynamics, oligosaccharide analogues were used to explore the interactions between S1-RBD of SARS CoV-2 and HS, revealing several low-specificity binding modes and previously unidentified potential sites for the binding of extended HS polysaccharide chains. The evidence for multiple binding modes also suggest that highly specific inhibitors will not be optimal against protein S but, rather, diverse HS-based structures, characterized by high affinity and including multi-valent compounds, may be required.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Unión Proteica , Dominios Proteicos , Simulación de Dinámica Molecular , Polisacáridos , Sitios de Unión , Glicoproteína de la Espiga del Coronavirus/química
7.
Org Biomol Chem ; 20(3): 596-605, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-34951618

RESUMEN

Sulfotransferases constitute a ubiquitous class of enzymes which are poorly understood due to the lack of a convenient tool for screening their activity. These enzymes use the anion PAPS (adenosine-3'-phosphate-5'-phosphosulfate) as a donor for a broad range of acceptor substrates, including carbohydrates, producing sulfated compounds and PAP (adenosine-3',5'-diphosphate) as a side product. We present a europium(III)-based probe that binds reversibly to both PAPS and PAP, producing a larger luminescence enhancement with the latter anion. We exploit this greater emission enhancement with PAP to demonstrate the first direct real-time assay of a heparan sulfate sulfotransferase using a multi-well plate format. The selective response of our probe towards PAP over structurally similar nucleoside phosphate anions, and over other anions, is investigated and discussed. This work opens the possibility of investigating more fully the roles played by this enzyme class in health and disease, including operationally simple inhibitor screening.


Asunto(s)
Complejos de Coordinación/metabolismo , Europio/metabolismo , Fosfoadenosina Fosfosulfato/metabolismo , Sulfotransferasas/metabolismo , Aniones/química , Aniones/metabolismo , Cationes/química , Cationes/metabolismo , Complejos de Coordinación/química , Europio/química , Estructura Molecular , Fosfoadenosina Fosfosulfato/química , Sulfotransferasas/química , Factores de Tiempo
8.
Biochem J ; 478(4): 735-748, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33480417

RESUMEN

Sulfated carbohydrate metabolism is a fundamental process, which occurs in all domains of life. Carbohydrate sulfatases are enzymes that remove sulfate groups from carbohydrates and are essential to the depolymerisation of complex polysaccharides. Despite their biological importance, carbohydrate sulfatases are poorly studied and challenges remain in accurately assessing the enzymatic activity, specificity and kinetic parameters. Most notably, the separation of desulfated products from sulfated substrates is currently a time-consuming process. In this paper, we describe the development of rapid capillary electrophoresis coupled to substrate fluorescence detection as a high-throughput and facile means of analysing carbohydrate sulfatase activity. The approach has utility for the determination of both kinetic and inhibition parameters and is based on existing microfluidic technology coupled to a new synthetic fluorescent 6S-GlcNAc carbohydrate substrate. Furthermore, we compare this technique, in terms of both time and resources, to high-performance anion exchange chromatography and NMR-based methods, which are the two current 'gold standards' for enzymatic carbohydrate sulfation analysis. Our study clearly demonstrates the advantages of mobility shift assays for the quantification of near real-time carbohydrate desulfation by purified sulfatases, and will support the search for small molecule inhibitors of these disease-associated enzymes.


Asunto(s)
Electroforesis Capilar/métodos , Ensayo de Cambio de Movilidad Electroforética/métodos , Fluorometría/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Técnicas Analíticas Microfluídicas/métodos , Sulfotransferasas/análisis , Proteínas Bacterianas/análisis , Proteínas Bacterianas/antagonistas & inhibidores , Bacteroides thetaiotaomicron/enzimología , Compuestos de Boro/análisis , Conformación de Carbohidratos , Cromatografía Líquida de Alta Presión , Cromatografía por Intercambio Iónico , Sistemas de Computación , Colorantes Fluorescentes/análisis , Glicosaminoglicanos/metabolismo , Cinética , Resonancia Magnética Nuclear Biomolecular , Proteínas Recombinantes/análisis , Especificidad por Sustrato , Sulfotransferasas/antagonistas & inhibidores
9.
Mar Drugs ; 19(4)2021 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-33916819

RESUMEN

Only palliative therapeutic options exist for the treatment of Alzheimer's Disease; no new successful drug candidates have been developed in over 15 years. The widely used clinical anticoagulant heparin has been reported to exert beneficial effects through multiple pathophysiological pathways involved in the aetiology of Alzheimer's Disease, for example, amyloid peptide production and clearance, tau phosphorylation, inflammation and oxidative stress. Despite the therapeutic potential of heparin as a multi-target drug for Alzheimer's disease, the repurposing of pharmaceutical heparin is proscribed owing to the potent anticoagulant activity of this drug. Here, a heterogenous non-anticoagulant glycosaminoglycan extract, obtained from the shrimp Litopenaeus vannamei, was found to inhibit the key neuronal ß-secretase, BACE1, displaying a more favorable therapeutic ratio compared to pharmaceutical heparin when anticoagulant activity is considered.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Glicosaminoglicanos/farmacología , Penaeidae/metabolismo , Inhibidores de Proteasas/farmacología , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Ácido Aspártico Endopeptidasas/metabolismo , Coagulación Sanguínea/efectos de los fármacos , Estabilidad de Enzimas , Glicosaminoglicanos/aislamiento & purificación , Humanos , Tiempo de Tromboplastina Parcial , Inhibidores de Proteasas/aislamiento & purificación , Tiempo de Protrombina
10.
Int J Mol Sci ; 22(21)2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34769513

RESUMEN

The non-enzymatic addition of glucose (glycation) to circulatory and tissue proteins is a ubiquitous pathophysiological consequence of hyperglycemia in diabetes. Given the high incidence of periodontitis and diabetes and the emerging link between these conditions, it is of crucial importance to define the basic virulence mechanisms employed by periodontopathogens such as Porphyromonas gingivalis in mediating the disease process. The aim of this study was to determine whether glycated proteins are more easily utilized by P. gingivalis to stimulate growth and promote the pathogenic potential of this bacterium. We analyzed the properties of three commonly encountered proteins in the periodontal environment that are known to become glycated and that may serve as either protein substrates or easily accessible heme sources. In vitro glycated proteins were characterized using colorimetric assays, mass spectrometry, far- and near-UV circular dichroism and UV-visible spectroscopic analyses and SDS-PAGE. The interaction of glycated hemoglobin, serum albumin and type one collagen with P. gingivalis cells or HmuY protein was examined using spectroscopic methods, SDS-PAGE and co-culturing P. gingivalis with human keratinocytes. We found that glycation increases the ability of P. gingivalis to acquire heme from hemoglobin, mostly due to heme sequestration by the HmuY hemophore-like protein. We also found an increase in biofilm formation on glycated collagen-coated abiotic surfaces. We conclude that glycation might promote the virulence of P. gingivalis by making heme more available from hemoglobin and facilitating bacterial biofilm formation, thus increasing P. gingivalis pathogenic potential in vivo.


Asunto(s)
Infecciones por Bacteroidaceae/metabolismo , Complicaciones de la Diabetes/fisiopatología , Eritrocitos/metabolismo , Hemo/metabolismo , Hemoglobinas/metabolismo , Periodontitis/microbiología , Porphyromonas gingivalis/patogenicidad , Animales , Infecciones por Bacteroidaceae/microbiología , Infecciones por Bacteroidaceae/patología , Glicosilación , Hemoproteínas/química , Hemoglobinas/química , Caballos , Periodontitis/patología , Porphyromonas gingivalis/aislamiento & purificación , Porphyromonas gingivalis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA