Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Infect Dis ; 229(1): 43-53, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-37368353

RESUMEN

West Nile virus (WNV), an arthropod-borne flavivirus, can cause severe symptoms, including encephalitis, and death, posing a threat to public health and the economy. However, there is still no approved treatment or vaccine available for humans. Here, we developed a novel vaccine platform based on a classical insect-specific flavivirus (cISF) YN15-283-02, which was derived from Culicoides. The cISF-WNV chimera was constructed by replacing prME structural genes of the infectious YN15-283-02 cDNA clone with those of WNV and successfully rescued in Aedes albopictus cells. cISF-WNV was nonreplicable in vertebrate cells and nonpathogenic in type I interferon receptor (IFNAR)-deficient mice. A single-dose immunization of cISF-WNV elicited considerable Th1-biased antibody responses in C57BL/6 mice, which was sufficient to offer complete protection against lethal WNV challenge with no symptoms. Our studies demonstrated the potential of the insect-specific cISF-WNV as a prophylactic vaccine candidate to prevent infection with WNV.


Asunto(s)
Aedes , Flavivirus , Vacunas , Fiebre del Nilo Occidental , Virus del Nilo Occidental , Animales , Ratones , Humanos , Virus del Nilo Occidental/genética , Flavivirus/genética , Fiebre del Nilo Occidental/prevención & control , Anticuerpos Antivirales , Ratones Endogámicos C57BL
2.
J Virol ; 96(6): e0148021, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35107379

RESUMEN

In our previous study, we found that a new type of Chikungunya virus particle with a complete capsid deletion (ΔC-CHIKV) is still infectious in BHK-21 cells and demonstrated its potential as a live attenuated vaccine candidate. However, the low yield as well as the disability to propagate in vaccine production cell line Vero of ΔC-CHIKV are not practical for commercial vaccine development. In this study, we not only achieved the successful propagation of the viral particle in Vero cells, but significantly improved its yield through construction of a chimeric VEEV-ΔC-CHIKV and extensive passage in Vero cells. Mechanistically, high production of VEEV-ΔC-CHIKV is due to the improvement of viral RNA packaging efficiency conferred by adaptive mutations, especially those in envelope proteins. Similar to ΔC-CHIKV, the passaged VEEV-ΔC-CHIKV is safe, immunogenic, and efficacious, which protects mice from CHIKV challenge after only one shot of immunization. Our study demonstrates that the utilization of infectious capsidless viral particle of CHIKV as a vaccine candidate is a practical strategy for the development of alphavirus vaccine. IMPORTANCE Chikungunya virus (CHIKV) is one of important emerging alphaviruses. Currently, there are no licensed vaccines against CHIKV infection. We have previously found a new type of Chikungunya virus particle with a complete capsid deletion (ΔC-CHIKV) as a live attenuated vaccine candidate that is not suitable for commercial vaccine development with the low viral titer production. In this study, we significantly improved its production through construction of a chimeric VEEV-ΔC-CHIKV. Our results proved the utilization of infectious capsidless viral particle of CHIKV as a safe and practical vaccine candidate.


Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Vacunas Virales , Cultivo de Virus , Animales , Proteínas de la Cápside/genética , Fiebre Chikungunya/prevención & control , Virus Chikungunya/genética , Chlorocebus aethiops , Ratones , Desarrollo de Vacunas , Vacunas Atenuadas/genética , Células Vero , Vacunas Virales/genética , Cultivo de Virus/métodos
3.
PLoS Pathog ; 16(5): e1008484, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32357182

RESUMEN

The flaviviruses pose serious threats to human health. Being a natural fusion of a methyltransferase (MTase) and an RNA-dependent RNA polymerase (RdRP), NS5 is the most conserved flavivirus protein and an important antiviral target. Previously reported NS5 structures represented by those from the Japanese encephalitis virus (JEV) and Dengue virus serotype 3 (DENV3) exhibit two apparently different global conformations, defining two sets of intra-molecular MTase-RdRP interactions. However, whether these NS5 conformations are conserved in flaviviruses and their specific functions remain elusive. Here we report two forms of DENV serotype 2 (DENV2) NS5 crystal structures representing two conformational states with defined analogies to the JEV-mode and DENV3-mode conformations, respectively, demonstrating the conservation of both conformation modes and providing clues for how different conformational states may be interconnected. Data from in vitro polymerase assays further demonstrate that perturbing the JEV-mode but not the DENV3-mode intra-molecular interactions inhibits catalysis only at initiation, while the cell-based virological analysis suggests that both modes of interactions are important for virus proliferation. Our work highlights the role of MTase as a unique intra-molecular initiation factor specifically only through the JEV-mode conformation, providing an example of conformation-based crosstalk between naturally fused protein functional modules.


Asunto(s)
Virus del Dengue/química , Virus de la Encefalitis Japonesa (Especie)/química , ARN Polimerasa Dependiente del ARN/química , Proteínas no Estructurales Virales/química , Animales , Cricetinae , Cristalografía por Rayos X , Virus del Dengue/metabolismo , Virus de la Encefalitis Japonesa (Especie)/metabolismo , Humanos , Dominios Proteicos , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas no Estructurales Virales/metabolismo
4.
Nucleic Acids Res ; 48(3): 1392-1405, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-31863580

RESUMEN

The enterovirus 71 (EV71) 3Dpol is an RNA-dependent RNA polymerase (RdRP) that plays the central role in the viral genome replication, and is an important target in antiviral studies. Here, we report a crystal structure of EV71 3Dpol elongation complex (EC) at 1.8 Å resolution. The structure reveals that the 5'-end guanosine of the downstream RNA template interacts with a fingers domain pocket, with the base sandwiched by H44 and R277 side chains through hydrophobic stacking interactions, and these interactions are still maintained after one in-crystal translocation event induced by nucleotide incorporation, implying that the pocket could regulate the functional properties of the polymerase by interacting with RNA. When mutated, residue R277 showed an impact on virus proliferation in virological studies with residue H44 having a synergistic effect. In vitro biochemical data further suggest that mutations at these two sites affect RNA binding, EC stability, but not polymerase catalytic rate (kcat) and apparent NTP affinity (KM,NTP). We propose that, although rarely captured by crystallography, similar surface pocket interaction with nucleobase may commonly exist in nucleic acid motor enzymes to facilitate their processivity. Potential applications in antiviral drug and vaccine development are also discussed.


Asunto(s)
Enterovirus Humano A/ultraestructura , Complejos Multiproteicos/ultraestructura , Conformación Proteica , ARN Polimerasa Dependiente del ARN/ultraestructura , Antivirales/química , Sitios de Unión , Cristalografía por Rayos X , Enterovirus Humano A/química , Enterovirus Humano A/genética , Genoma Viral , Humanos , Modelos Moleculares , Complejos Multiproteicos/química , Nucleótidos/química , ARN Viral/química , ARN Viral/ultraestructura , ARN Polimerasa Dependiente del ARN/química , Replicación Viral/genética
5.
J Gen Virol ; 102(5)2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33956592

RESUMEN

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus, which is highly pathogenic and classified as a biosafety level 3 (BSL-3) agent, has greatly threatened global health and efficacious antivirals are urgently needed. The high requirement of facilities to manipulate the live virus has limited the development of antiviral study. Here, we constructed a reporter replicon of SARS-CoV-2, which can be handled in a BSL-2 laboratory. The Renilla luciferase activity effectively reflected the transcription and replication levels of the replicon genome. We identified the suitability of the replicon in antiviral screening using the known inhibitors, and thus established the replicon-based high-throughput screening (HTS) assay for SARS-CoV-2. The application of the HTS assay was further validated using a few hit natural compounds, which were screened out in a SARS-CoV-2 induced cytopathic-effect-based HTS assay in our previous study. This replicon-based HTS assay will be a safe platform for SARS-CoV-2 antiviral screening in a BSL-2 laboratory without the live virus.


Asunto(s)
Antivirales/farmacología , Evaluación Preclínica de Medicamentos/métodos , Replicón/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , Animales , Chlorocebus aethiops , Descubrimiento de Drogas , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Replicón/genética , SARS-CoV-2/genética , Células Vero , Replicación Viral/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
6.
J Virol ; 94(5)2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-31826997

RESUMEN

Mosquito-borne flaviviruses, which include many important human pathogens, such as West Nile virus (WNV), dengue virus (DENV), and Zika virus (ZIKV), have caused numerous emerging epidemics in recent years. Details of the viral genome functions necessary for effective viral replication in mosquito and vertebrate hosts remain obscure. Here, using ZIKV as a model, we found that the conserved "downstream of AUG region" (DAR), which is known to be an essential element for genome cyclization, is involved in viral replication in a host-specific manner. Mutational analysis of the DAR element showed that a single-nucleotide mismatch between the 5' DAR and the 3' DAR had little effect on ZIKV replication in mammalian cells but dramatically impaired viral propagation in mosquito cells. The revertant viruses passaged in mosquito cells generated compensatory mutations restoring the base pairing of the DAR, further confirming the importance of the complementarity of the DAR in mosquito cells. We demonstrate that a single-nucleotide mutation in the DAR is sufficient to destroy long-range RNA interaction of the ZIKV genome and affects de novo RNA synthesis at 28°C instead of 37°C, resulting in the different replication efficiencies of the mutant viruses in mosquito and mammalian cells. Our results reveal a novel function of the circular form of the flavivirus genome in host-specific viral replication, providing new ideas to further explore the functions of the viral genome during host adaptation.IMPORTANCE Flaviviruses naturally cycle between the mosquito vector and vertebrate hosts. The disparate hosts provide selective pressures that drive virus genome evolution to maintain efficient replication during host alteration. Host adaptation may occur at different stages of the viral life cycle, since host-specific viral protein processing and virion conformations have been reported in the individual hosts. However, the viral determinants and the underlying mechanisms associated with host-specific functions remain obscure. In this study, using Zika virus, we found that the DAR-mediated genome cyclization regulates viral replication differently and is under different selection pressures in mammalian and mosquito cells. A more constrained complementarity of the DAR is required in mosquito cells than in mammalian cells. Since the DAR element is stably maintained among mosquito-borne flaviviruses, our findings could provide new information for understanding the role of flavivirus genome cyclization in viral adaptation and RNA evolution in the two hosts.


Asunto(s)
Flavivirus/genética , Especificidad del Huésped/fisiología , Replicación Viral/fisiología , Virus Zika/genética , Animales , Secuencia de Bases , Chlorocebus aethiops , Culicidae/virología , Ciclización , Evolución Molecular , Genoma Viral , Humanos , Mutación , ARN Viral/genética , Células Vero , Virus Zika/crecimiento & desarrollo , Infección por el Virus Zika/genética
7.
J Virol ; 94(6)2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-31896596

RESUMEN

Mosquito-borne flaviviruses consist of a positive-sense genome RNA flanked by the untranslated regions (UTRs). There is a panel of highly complex RNA structures in the UTRs with critical functions. For instance, Xrn1-resistant RNAs (xrRNAs) halt Xrn1 digestion, leading to the production of subgenomic flaviviral RNA (sfRNA). Conserved short direct repeats (DRs), also known as conserved sequences (CS) and repeated conserved sequences (RCS), have been identified as being among the RNA elements locating downstream of xrRNAs, but their biological function remains unknown. In this study, we revealed that the specific DRs are involved in the production of specific sfRNAs in both mammalian and mosquito cells. Biochemical assays and structural remodeling demonstrate that the base pairings in the stem of these DRs control sfRNA formation by maintaining the binding affinity of the corresponding xrRNAs to Xrn1. On the basis of these findings, we propose that DRs functions like a bracket holding the Xrn1-xrRNA complex for sfRNA formation.IMPORTANCE Flaviviruses include many important human pathogens. The production of subgenomic flaviviral RNAs (sfRNAs) is important for viral pathogenicity as a common feature of flaviviruses. sfRNAs are formed through the incomplete degradation of viral genomic RNA by the cytoplasmic 5'-3' exoribonuclease Xrn1 halted at the Xrn1-resistant RNA (xrRNA) structures within the 3'-UTR. The 3'-UTRs of the flavivirus genome also contain distinct short direct repeats (DRs), such as RCS3, CS3, RCS2, and CS2. However, the biological functions of these ancient primary DR sequences remain largely unknown. Here, we found that DR sequences are involved in sfRNA formation and viral virulence and provide novel targets for the rational design of live attenuated flavivirus vaccine.


Asunto(s)
Regiones no Traducidas 3'/fisiología , Flavivirus/metabolismo , Genoma Viral/fisiología , Conformación de Ácido Nucleico , ARN Viral/biosíntesis , Secuencias Repetidas en Tándem/fisiología , Células A549 , Animales , Chlorocebus aethiops , Cricetinae , Culicidae/metabolismo , Culicidae/virología , Flavivirus/genética , Humanos , ARN Viral/genética , Células Vero
8.
J Virol ; 93(15)2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31092567

RESUMEN

Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes epidemics of debilitating disease worldwide. Currently, there are no licensed vaccines or antivirals available against CHIKV infection. In this study, we generated a novel live attenuated vaccine (LAV) candidate for CHIKV with a complete deficiency of capsid (ΔC-CHIKV). It could propagate in BHK-21 cells, and had antigenic properties similar to those of native CHIKV. Vaccination of either immunocompromised IFNAR-/- mice or immunocompetent C57BL/6 mice with a single dose of ΔC-CHIKV conferred complete protection upon challenge with wild-type (WT) CHIKV. Taken together, this vaccine candidate appeared to be safe and efficacious, representing a novel strategy for CHIKV vaccine design.IMPORTANCE Currently, there is no licensed vaccine against CHIKV infection. An ideal CHIKV vaccine should generate an optimal balance between efficacy and safety. Live attenuated vaccines that can elicit strong immune responses often involve a trade-off of reduced safety. Here, a novel live attenuated vaccine candidate for CHIKV lacking the entire capsid gene, ΔC-CHIKV, was developed. It was demonstrated to be genetically stable, highly attenuated, immunogenic, and able to confer complete protection against lethal CHIKV challenge after a single dose of immunization. Such an infectious vaccine candidate devoid of capsid provides a novel strategy for the development of a live attenuated CHIKV vaccine.


Asunto(s)
Proteínas de la Cápside/genética , Fiebre Chikungunya/prevención & control , Virus Chikungunya/genética , Virus Chikungunya/inmunología , Eliminación de Secuencia , Vacunas Virales/inmunología , Animales , Línea Celular , Fiebre Chikungunya/inmunología , Cricetinae , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Ratones Noqueados , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología , Vacunas Atenuadas/aislamiento & purificación , Vacunas Virales/genética , Vacunas Virales/aislamiento & purificación
10.
J Virol ; 92(17)2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29950413

RESUMEN

The mechanisms underlying neurodevelopmental damage caused by virus infections remain poorly defined. Congenital human cytomegalovirus (HCMV) infection is the leading cause of fetal brain development disorders. Previous work has linked HCMV infection to perturbations of neural cell fate, including premature differentiation of neural progenitor cells (NPCs). Here, we show that HCMV infection of NPCs results in loss of the SOX2 protein, a key pluripotency-associated transcription factor. SOX2 depletion maps to the HCMV major immediate early (IE) transcription unit and is individually mediated by the IE1 and IE2 proteins. IE1 causes SOX2 downregulation by promoting the nuclear accumulation and inhibiting the phosphorylation of STAT3, a transcriptional activator of SOX2 expression. Deranged signaling resulting in depletion of a critical stem cell protein is an unanticipated mechanism by which the viral major IE proteins may contribute to brain development disorders caused by congenital HCMV infection.IMPORTANCE Human cytomegalovirus (HCMV) infections are a leading cause of brain damage, hearing loss, and other neurological disabilities in children. We report that the HCMV proteins known as IE1 and IE2 target expression of human SOX2, a central pluripotency-associated transcription factor that governs neural progenitor cell (NPC) fate and is required for normal brain development. Both during HCMV infection and when expressed alone, IE1 causes the loss of SOX2 from NPCs. IE1 mediates SOX2 depletion by targeting STAT3, a critical upstream regulator of SOX2 expression. Our findings reveal an unanticipated mechanism by which a common virus may cause damage to the developing nervous system and suggest novel targets for medical intervention.


Asunto(s)
Citomegalovirus/crecimiento & desarrollo , Interacciones Huésped-Patógeno , Proteínas Inmediatas-Precoces/metabolismo , Células-Madre Neurales/patología , Células-Madre Neurales/virología , Factores de Transcripción SOXB1/metabolismo , Factor de Transcripción STAT3/metabolismo , Células Cultivadas , Humanos
11.
J Virol ; 91(18)2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28659477

RESUMEN

West Nile virus (WNV) is a mosquito-borne flavivirus that causes epidemics of encephalitis and viscerotropic disease worldwide. This virus has spread rapidly and has posed a significant public health threat since the outbreak in New York City in 1999. The interferon (IFN)-mediated antiviral response represents an important component of virus-host interactions and plays an essential role in regulating viral replication. Previous studies have suggested that multifunctional nonstructural proteins encoded by flaviviruses antagonize the host IFN response via various means in order to establish efficient viral replication. In this study, we demonstrated that the nonstructural protein 1 (NS1) of WNV antagonizes IFN-ß production, most likely through suppression of retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) activation. In a dual-luciferase reporter assay, WNV NS1 significantly inhibited the activation of the IFN-ß promoter after Sendai virus infection or poly(I·C) treatment. NS1 also suppressed the activation of the IFN-ß promoter when it was stimulated by interferon regulatory factor 3 (IRF3)/5D or its upstream molecules in the RLR signaling pathway. Furthermore, NS1 blocked the phosphorylation and nuclear translocation of IRF3 upon stimulation by various inducers. Mechanistically, WNV NS1 targets RIG-I and melanoma differentiation-associated gene 5 (MDA5) by interacting with them and subsequently causing their degradation by the proteasome. Furthermore, WNV NS1 inhibits the K63-linked polyubiquitination of RIG-I, thereby inhibiting the activation of downstream sensors in the RLR signaling pathway. Taken together, our results reveal a novel mechanism by which WNV NS1 interferes with the host antiviral response.IMPORTANCE WNV Nile virus (WNV) has received increased attention since its introduction to the United States. However, the pathogenesis of this virus is poorly understood. This study demonstrated that the nonstructural protein 1 (NS1) of WNV antagonizes the induction of interferon beta (IFN-ß) by interacting with and degrading retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5), which are crucial viral sensors in the host innate immune system. Further experiments suggested that NS1-mediated inhibition of the RIG-I-like receptor (RLR) signaling pathway involves inhibition of RIG-I K63-linked polyubiquitination and that the proteasome plays a role in RIG-I degradation. This study provides new insights into the regulation of WNV NS1 in the RLR signaling pathway and reveals a novel mechanism by which WNV evades the host innate immune response. The novel findings may guide us to discover new therapeutic targets and develop effective vaccines for WNV infections.


Asunto(s)
Proteína 58 DEAD Box/metabolismo , Interacciones Huésped-Patógeno , Evasión Inmune , Helicasa Inducida por Interferón IFIH1/metabolismo , Interferón beta/antagonistas & inhibidores , Proteínas no Estructurales Virales/metabolismo , Virus del Nilo Occidental/patogenicidad , Animales , Línea Celular , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Receptores Inmunológicos , Virus del Nilo Occidental/inmunología
12.
J Gen Virol ; 98(7): 1739-1743, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28703698

RESUMEN

In this study, an in vitro ligation method was developed to assemble a full-length infectious cDNA clone of the Zika virus (ZIKV). Four contiguous cDNA subclones covering the complete ZIKV genome were constructed with unique BglI restriction sites at the ends of each fragment. The BglI restriction sites only allow in vitro ligation to happen between interconnecting restriction sites from adjacent cDNA fragments, resulting in an intact full-length cDNA of ZIKV. RNA transcripts derived from the full-length cDNA were infectious. The recombinant virus replicated as efficiently as the wild-type virus with similar growth kinetics and plaque morphologies in Vero and C6/36 cells. Both viruses were inhibited by NITD008 treatment. This in vitro ligation method will facilitate manipulation of the viral genome through genetic modifications of four separated subclones of ZIKV for the rapid and rational development of candidate vaccines and viral replication study.


Asunto(s)
Clonación Molecular/métodos , ADN Complementario/genética , ADN Viral/genética , ARN Viral/genética , Virus Zika/genética , Adenosina/análogos & derivados , Adenosina/farmacología , Aedes , Animales , Antivirales/farmacología , Línea Celular , Chlorocebus aethiops , Cricetinae , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Genoma Viral/genética , Células Vero , Virus Zika/efectos de los fármacos , Virus Zika/aislamiento & purificación
13.
J Virol ; 90(12): 5735-5749, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27053551

RESUMEN

UNLABELLED: Flavivirus nonstructural protein 2B (NS2B) is a transmembrane protein that functions as a cofactor for viral NS3 protease. The cytoplasmic region (amino acids 51 to 95) alone of NS2B is sufficient for NS3 protease activity, whereas the role of transmembrane domains (TMDs) remains obscure. Here, we demonstrate for the first time that flavivirus NS2B plays a critical role in virion assembly. Using Japanese encephalitis virus (JEV) as a model, we performed a systematic mutagenesis at the flavivirus conserved residues within the TMDs of NS2B. As expected, some mutations severely attenuated (L38A and R101A) or completely destroyed (G12L) viral RNA synthesis. Interestingly, two mutations (G37L and P112A) reduced viral RNA synthesis and blocked virion assembly. None of the mutations affected NS2B-NS3 protease activity. Because mutations G37L and P112A affected virion assembly, we selected revertant viruses for these two mutants. For mutant G37L, replacement with G37F, G37H, G37T, or G37S restored virion assembly. For mutant P112A, insertion of K at position K127 (leading to K127KK) of NS2B rescued virion assembly. A biomolecular fluorescent complementation (BiFC) analysis demonstrated that (i) mutation P112A selectively weakened NS2B-NS2A interaction and (ii) the adaptive mutation K127KK restored NS2B-NS2A interaction. Collectively, our results demonstrate that, in addition to being a cofactor for NS3 protease, flavivirus NS2B also functions in viral RNA replication, as well as virion assembly. IMPORTANCE: Many flaviviruses are important human pathogens. Understanding the molecular mechanisms of the viral infection cycle is essential for vaccine and antiviral development. In this study, we demonstrate that the TMDs of JEV NS2B participate in both viral RNA replication and virion assembly. A viral genetic study and a BiFC assay demonstrated that interaction between NS2B and NS2A may participate in modulating viral assembly in the flavivirus life cycle. Compensatory-mutation analysis confirmed that there was a correlation between viral assembly and NS2B-NS2A interaction. TMDs of NS2B may serve as novel antiviral targets to prevent flavivirus infection, and the structure determination of NS2B will help us to understand the functional mechanism of NS2B in viral RNA replication and assembly. The results have uncovered a new function of flavivirus NS2B in virion assembly, possibly through interaction with the NS2A protein.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie)/fisiología , ARN Viral/metabolismo , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Ensamble de Virus , Replicación Viral , Análisis Mutacional de ADN , Virus de la Encefalitis Japonesa (Especie)/química , Virus de la Encefalitis Japonesa (Especie)/genética , Humanos , Mutagénesis , Dominios Proteicos
14.
Arch Virol ; 162(11): 3417-3423, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28779235

RESUMEN

Japanese encephalitis virus (JEV), an important pathogen in Eastern and Southern Asia and the Pacific, has spread to Australia and other territories in recent years. Although the vaccine for JEV has been used in some countries, development of efficient antiviral drugs is still an urgent requirement. Replicon systems have been widely used in the research of viral replication and antiviral screening for West Nile virus (WNV), yellow fever virus (YFV) and dengue virus (DENV). Here, a novel JEV replicon harboring the Rluc and Pac gene (JEV-Pac-Rluc-Rep) was constructed. Furthermore, we established a BHK-21 cell line harboring JEV-Pac-Rluc-Rep (BHK-21/PAC/Rluc cell line) through continuous puromycin selection. Characterization of cell line stability showed that the replicon RNA could persistently replicate in this cell line for at least up to 10 rounds of passage. Using a known flavivirus inhibitor, the JEV replicon cell line was validated for antiviral screening. The JEV replicon cell line will be a valuable tool for both compound screening and viral replication studies.


Asunto(s)
Antivirales/uso terapéutico , Virus de la Encefalitis Japonesa (Especie)/fisiología , Animales , Línea Celular , Cricetinae , Puromicina , Replicón/genética , Replicón/fisiología , Replicación Viral
15.
J Virol ; 89(2): 1070-82, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25378484

RESUMEN

UNLABELLED: Congenital human cytomegalovirus (HCMV) infection is a leading cause of birth defects, primarily manifesting as neurological disorders. HCMV infection alters expression of cellular microRNAs (miRs) and induces cell cycle arrest, which in turn modifies the cellular environment to favor virus replication. Previous observations found that HCMV infection reduces miR-21 expression in neural progenitor/stem cells (NPCs). Here, we show that infection of NPCs and U-251MG cells represses miR-21 while increasing the levels of Cdc25a, a cell cycle regulator and known target of miR-21. These opposing responses to infection prompted an investigation of the relationship between miR-21, Cdc25a, and viral replication. Overexpression of miR-21 in NPCs and U-251MG cells inhibited viral gene expression, genome replication, and production of infectious progeny, while shRNA-knockdown of miR-21 in U-251MG cells increased viral gene expression. In contrast, overexpression of Cdc25a in U-251MG cells increased viral gene expression and production of infectious progeny and overcame the inhibitory effects of miR-21 overexpression. Three viral gene products-IE1, pp71, and UL26-were shown to inhibit miR-21 expression at the transcriptional level. These results suggest that Cdc25a promotes HCMV replication and elevation of Cdc25a levels after HCMV infection are due in part to HCMV-mediated repression of miR-21. Thus, miR-21 is an intrinsic antiviral factor that is modulated by HCMV infection. This suggests a role for miR-21 downregulation in the neuropathogenesis of HCMV infection of the developing CNS. IMPORTANCE: Human cytomegalovirus (HCMV) is a ubiquitous pathogen and has very high prevalence among population, especially in China, and congenital HCMV infection is a major cause for birth defects. Elucidating virus-host interactions that govern HCMV replication in neuronal cells is critical to understanding the neuropathogenesis of birth defects resulting from congenital infection. In this study, we confirm that HCMV infection downregulates miR-21 but upregulates Cdc25a. Further determined the negative effects of cellular miRNA miR-21 on HCMV replication in neural progenitor/stem cells and U-251MG glioblastoma/astrocytoma cells. More importantly, our results provide the first evidence that miR-21 negatively regulates HCMV replication by targeting Cdc25a, a vital cell cycle regulator. We further found that viral gene products of IE1, pp71, and UL26 play roles in inhibiting miR-21 expression, which in turn causes increases in Cdc25a and benefits HCMV replication. Thus, miR-21 appears to be an intrinsic antiviral factor that represents a potential target for therapeutic intervention.


Asunto(s)
Citomegalovirus/inmunología , Interacciones Huésped-Patógeno , MicroARNs/metabolismo , Células-Madre Neurales/inmunología , Células-Madre Neurales/virología , Replicación Viral , Fosfatasas cdc25/metabolismo , Células Cultivadas , Citomegalovirus/fisiología , Humanos
16.
J Gen Virol ; 96(Pt 6): 1264-1275, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25575708

RESUMEN

Flavivirus NS4A and NS4B are important membrane proteins for viral replication that are assumed to serve as the scaffold for the formation of replication complexes. We previously demonstrated that a single Lys-to-Arg mutation at position 79 in NS4A (NS4A-K79R) significantly impaired Japanese encephalitis virus (JEV) replication. In this study, the mutant virus was subject to genetic selection to search for the potential interaction between NS4A and other viral components. Sequencing of the recovered viruses revealed that, in addition to an A97E change in NS4A itself, a Y3N compensatory mutation located in NS4B had emerged from independent selections. Mutagenesis analysis, using a genome-length RNA and a replicon of JEV, demonstrated that both adaptive mutations greatly restored the replication defect caused by NS4A-K79R. Our results, for the first time to our knowledge, clearly showed the genetic interaction between NS4A and NS4B, although the mechanism underlying their interaction is unknown.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie)/fisiología , Mapeo de Interacción de Proteínas , Proteínas no Estructurales Virales/metabolismo , Replicación Viral , Sustitución de Aminoácidos , Animales , Análisis Mutacional de ADN , Virus de la Encefalitis Japonesa (Especie)/genética , Mutación Missense , Selección Genética , Supresión Genética , Proteínas no Estructurales Virales/genética
17.
J Virol ; 88(20): 11915-23, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25100827

RESUMEN

Enterovirus 71 (EV71) is a major viral pathogen in China and Southeast Asia. There is no clinically approved vaccine or antiviral therapy for EV71 infection. NITD008, an adenosine analog, is an inhibitor of flavivirus that blocks viral RNA synthesis. Here we report that NITD008 has potent antiviral activity against EV71. In cell culture, the compound inhibits EV71 at a 50% effective concentration of 0.67 µM and a 50% cytotoxic concentration of 119.97 µM. When administered at 5 mg/kg in an EV71 mouse model, the compound reduced viral loads in various organs and completely prevented clinical symptoms and death. To study the antiviral mechanism and drug resistance, we selected escape mutant viruses by culturing EV71 with increasing concentrations of NITD008. Resistance mutations were reproducibly mapped to the viral 3A and 3D polymerase regions. Resistance analysis with recombinant viruses demonstrated that either a 3A or a 3D mutation alone could lead to resistance to NITD008. A combination of both 3A and 3D mutations conferred higher resistance, suggesting a collaborative interplay between the 3A and 3D proteins during viral replication. The resistance results underline the importance of combination therapy required for EV71 treatment. Importance: Human enterovirus 71 (EV71) has emerged as a major cause of viral encephalitis in children worldwide, especially in the Asia-Pacific region. Vaccines and antivirals are urgently needed to prevent and treat EV71 infections. In this study, we report the in vitro and in vivo efficacy of NITD008 (an adenosine analog) as an inhibitor of EV71. The efficacy results validated the potential of nucleoside analogs as antiviral drugs for EV71 infections. Mechanistically, we showed that mutations in the viral 3A and 3D polymerases alone or in combination could confer resistance to NITD008. The resistance results suggest an intrinsic interaction between viral proteins 3A and 3D during replication, as well as the importance of combination therapy for the treatment of EV71 infections.


Asunto(s)
Adenosina/análogos & derivados , Adenosina/farmacología , Antivirales/farmacología , Enterovirus Humano A/efectos de los fármacos , Animales , Antivirales/uso terapéutico , Chlorocebus aethiops , Farmacorresistencia Viral/genética , Enterovirus Humano A/crecimiento & desarrollo , Enterovirus Humano A/fisiología , Infecciones por Enterovirus/tratamiento farmacológico , Infecciones por Enterovirus/fisiopatología , Infecciones por Enterovirus/virología , Ratones , Mutación , Células Vero , Carga Viral , Ensayo de Placa Viral , Replicación Viral
18.
J Virol ; 88(7): 3861-73, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24453365

RESUMEN

UNLABELLED: After infection, human cytomegalovirus (HCMV) persists for life. Primary infections and reactivation of latent virus can both result in congenital infection, a leading cause of central nervous system birth defects. We previously reported long-term HCMV infection in the T98G glioblastoma cell line (1). HCMV infection has been further characterized in T98Gs, emphasizing the presence of HCMV DNA over an extended time frame. T98Gs were infected with either HCMV Towne or AD169-IE2-enhanced green fluorescent protein (eGFP) strains. Towne infections yielded mixed IE1 antigen-positive and -negative (Ag(+)/Ag(-)) populations. AD169-IE2-eGFP infections also yielded mixed populations, which were sorted to obtain an IE2(-) (Ag(-)) population. Viral gene expression over the course of infection was determined by immunofluorescent analysis (IFA) and reverse transcription-PCR (RT-PCR). The presence of HCMV genomes was determined by PCR, nested PCR (n-PCR), and fluorescence in situ hybridization (FISH). Compared to the HCMV latency model, THP-1, Towne-infected T98Gs expressed IE1 and latency-associated transcripts for longer periods, contained many more HCMV genomes during early passages, and carried genomes for a greatly extended period of passaging. Large numbers of HCMV genomes were also found in purified Ag(-) AD169-infected cells for the first several passages. Interestingly, latency transcripts were observed from very early times in the Towne-infected cells, even when IE1 was expressed at low levels. Although AD169-infected Ag(-) cells expressed no detectable levels of either IE1 or latency transcripts, they also maintained large numbers of genomes within the cell nuclei for several passages. These results identify HCMV-infected T98Gs as an attractive new model in the study of the long-term maintenance of virus genomes in the context of neural cell types. IMPORTANCE: Our previous work showed that T98G glioblastoma cells were semipermissive to HCMV infection; virus trafficked to the nucleus, and yet only a proportion of cells stained positive for viral antigens, thus allowing continual subculturing and passaging. The cells eventually transitioned to a state where viral genomes were maintained without viral antigen expression or virion production. Here we report that during long-term T98G infection, large numbers of genomes were maintained within all of the cells' nuclei for the first several passages (through passage 4 [P4]), even in the presence of continual cellular division. Surprisingly, genomes were maintained, albeit at a lower level, through day 41. This is decidedly longer than in any other latency model system that has been described to date. We believe that this system offers a useful model to aid in unraveling the cellular components involved in viral genome maintenance (and presumably replication) in cells carrying long-term latent genomes in a neural context.


Asunto(s)
Citomegalovirus/fisiología , Neuroglía/virología , Latencia del Virus , Adenoviridae/fisiología , Línea Celular Tumoral , Perfilación de la Expresión Génica , Regulación Viral de la Expresión Génica , Humanos
19.
J Gen Virol ; 95(Pt 4): 806-815, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24362961

RESUMEN

A full-length genome infectious clone is a powerful tool for functional assays in virology. In this study, using a chemical synthesized complete genome of Japanese encephalitis virus (JEV) strain SA14 (GenBank accession no. U14163), we constructed a full-length genomic cDNA clone of JEV. The recovered virus from the cDNA clone replicated poorly in baby hamster kidney (BHK-21) cells and in suckling mice brain. Following serial passage in BHK-21 cells, adaptive mutations within the NS2B and NS4A proteins were recovered in the passaged viruses leading to viruses with a large-plaque phenotype. Mutagenesis analysis, using a genome-length RNA and a replicon of JEV, demonstrated that the adaptive mutations restored replication to different degrees, and the restoration efficiencies were in the order: NS2B-T102M

Asunto(s)
Adaptación Biológica , Virus de la Encefalitis Japonesa (Especie)/fisiología , Mutación Missense , Pase Seriado , Proteínas no Estructurales Virales/genética , Replicación Viral , Animales , Encéfalo/virología , Línea Celular , Cricetinae , Análisis Mutacional de ADN , Modelos Animales de Enfermedad , Virus de la Encefalitis Japonesa (Especie)/genética , Encefalitis Japonesa/patología , Encefalitis Japonesa/virología , Femenino , Ratones , Ratones Endogámicos BALB C , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Genética Inversa , Proteínas no Estructurales Virales/metabolismo , Virulencia
20.
J Virol ; 87(20): 10968-79, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23903847

RESUMEN

Congenital human cytomegalovirus (HCMV) infection is the most frequent infectious cause of birth defects, primarily neurological disorders. Neural progenitor/stem cells (NPCs) are the major cell type in the subventricular zone and are susceptible to HCMV infection. In culture, the differentiation status of NPCs may change with passage, which in turn may alter susceptibility to virus infection. Previously, only early-passage (i.e., prior to passage 9) NPCs were studied and shown to be permissive to HCMV infection. In this study, NPC cultures derived at different gestational ages were evaluated after short (passages 3 to 6) and extended (passages 11 to 20) in vitro passages for biological and virological parameters (i.e., cell morphology, expression of NPC markers and HCMV receptors, viral entry efficiency, viral gene expression, virus-induced cytopathic effect, and release of infectious progeny). These parameters were not significantly influenced by the gestational age of the source tissues. However, extended-passage cultures showed evidence of initiation of differentiation, increased viral entry, and more efficient production of infectious progeny. These results confirm that NPCs are fully permissive for HCMV infection and that extended-passage NPCs initiate differentiation and are more permissive for HCMV infection. Later-passage NPCs being differentiated and more permissive for HCMV infection suggest that HCMV infection in fetal brain may cause more neural cell loss and give rise to severe neurological disabilities with advancing brain development.


Asunto(s)
Encéfalo/citología , Citomegalovirus/crecimiento & desarrollo , Células-Madre Neurales/fisiología , Células-Madre Neurales/virología , Diferenciación Celular , Humanos , Pase Seriado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA