Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cell Mol Life Sci ; 81(1): 114, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38436813

RESUMEN

Hyperuricemia is an independent risk factor for chronic kidney disease (CKD) and promotes renal fibrosis, but the underlying mechanism remains largely unknown. Unresolved inflammation is strongly associated with renal fibrosis and is a well-known significant contributor to the progression of CKD, including hyperuricemia nephropathy. In the current study, we elucidated the impact of Caspase-11/Gasdermin D (GSDMD)-dependent neutrophil extracellular traps (NETs) on progressive hyperuricemic nephropathy. We found that the Caspase-11/GSDMD signaling were markedly activated in the kidneys of hyperuricemic nephropathy. Deletion of Gsdmd or Caspase-11 protects against the progression of hyperuricemic nephropathy by reducing kidney inflammation, proinflammatory and profibrogenic factors expression, NETs generation, α-smooth muscle actin expression, and fibrosis. Furthermore, specific deletion of Gsdmd or Caspase-11 in hematopoietic cells showed a protective effect on renal fibrosis in hyperuricemic nephropathy. Additionally, in vitro studies unveiled the capability of uric acid in inducing Caspase-11/GSDMD-dependent NETs formation, consequently enhancing α-smooth muscle actin production in macrophages. In summary, this study demonstrated the contributory role of Caspase-11/GSDMD in the progression of hyperuricemic nephropathy by promoting NETs formation, which may shed new light on the therapeutic approach to treating and reversing hyperuricemic nephropathy.


Asunto(s)
Trampas Extracelulares , Hiperuricemia , Insuficiencia Renal Crónica , Humanos , Hiperuricemia/complicaciones , Actinas , Ácido Úrico , Caspasas , Inflamación , Fibrosis , Gasderminas , Proteínas de Unión a Fosfato
2.
Artículo en Inglés | MEDLINE | ID: mdl-38244230

RESUMEN

BACKGROUND AND HYPOTHESIS: Acute kidney injury (AKI) could progress to chronic kidney disease (CKD) and the AKI-CKD transition has major clinical significance. A growing body of evidence has unveiled the role of pyroptosis in kidney injury. We postulate that GSDMD and GSDME exert cumulative effects on the AKI-CKD transition by modulating different cellular responses. METHODS: We established an AKI-CKD transition model induced by folic acid in wildtype (WT), Gsdmd-/-, Gsdme-/-, and Gsdmd-/-Gsdme-/- mice. Tubular injury, renal fibrosis and inflammatory responses were evaluated. In vitro studies were conducted to investigate the interplay among tubular cells, neutrophils, and macrophages. RESULTS: Double deletion of Gsdmd and Gsdme conferred heightened protection against AKI, mitigating inflammatory responses, including the formation of neutrophil extracellular traps (NETs), macrophage polarization and differentiation, and ultimately renal fibrosis, compared with wildtype mice and mice with single deletion of either Gsdmd or Gsdme. Gsdme, but not Gsdmd deficiency, shielded tubular cells from pyroptosis. GSDME-dependent tubular cell death stimulated NETs formation and prompted macrophage polarization towards a pro-inflammatory phenotype. Gsdmd deficiency suppressed NETs formation and subsequently hindered NETs-induced macrophage-to-myofibroblast transition (MMT). CONCLUSION: GSDMD and GSDME collaborate to contribute to AKI and subsequent renal fibrosis induced by folic acid. Synchronous inhibition of GSDMD and GSDME could be an innovative therapeutic strategy for mitigating the AKI-CKD transition.

3.
Cell Death Differ ; 31(5): 635-650, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38493248

RESUMEN

Diquat (DQ) poisoning is a severe medical condition associated with life-threatening implications and multiorgan dysfunction. Despite its clinical significance, the precise underlying mechanism remains inadequately understood. This study elucidates that DQ induces instability in the mitochondrial genome of endothelial cells, resulting in the accumulation of Z-form DNA. This process activates Z-DNA binding protein 1 (ZBP1), which then interacts with receptor-interacting protein kinase 3 (RIPK3), ultimately leading to RIPK3-dependent necroptotic and ferroptotic signaling cascades. Specific deletion of either Zbp1 or Ripk3 in endothelial cells simultaneously inhibits both necroptosis and ferroptosis. This dual inhibition significantly reduces organ damage and lowers mortality rate. Notably, our investigation reveals that RIPK3 has a dual role. It not only phosphorylates MLKL to induce necroptosis but also phosphorylates FSP1 to inhibit its enzymatic activity, promoting ferroptosis. The study further shows that deletion of mixed lineage kinase domain-like (Mlkl) and the augmentation of ferroptosis suppressor protein 1 (FSP1)-dependent non-canonical vitamin K cycling can provide partial protection against DQ-induced organ damage. Combining Mlkl deletion with vitamin K treatment demonstrates a heightened efficacy in ameliorating multiorgan damage and lethality induced by DQ. Taken together, this study identifies ZBP1 as a crucial sensor for DQ-induced mitochondrial Z-form DNA, initiating RIPK3-dependent necroptosis and ferroptosis. These findings suggest that targeting the ZBP1/RIPK3-dependent necroptotic and ferroptotic pathways could be a promising approach for drug interventions aimed at mitigating the adverse consequences of DQ poisoning.


Asunto(s)
ADN Mitocondrial , Ferroptosis , Necroptosis , Proteínas de Unión al ARN , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Ferroptosis/efectos de los fármacos , Animales , Necroptosis/efectos de los fármacos , Ratones , ADN Mitocondrial/metabolismo , ADN Mitocondrial/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Humanos , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética , Ratones Endogámicos C57BL , Masculino
4.
Cell Death Dis ; 14(2): 163, 2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36849530

RESUMEN

Necroptosis refers to a regulated form of cell death induced by a variety of stimuli. Although it has been implicated in the pathogenesis of many diseases, there is evidence to support that necroptosis is not purely a detrimental process. We propose that necroptosis is a "double-edged sword" in terms of physiology and pathology. On the one hand, necroptosis can trigger an uncontrolled inflammatory cascade response, resulting in severe tissue injury, disease chronicity, and even tumor progression. On the other hand, necroptosis functions as a host defense mechanism, exerting antipathogenic and antitumor effects through its powerful pro-inflammatory properties. Moreover, necroptosis plays an important role during both development and regeneration. Misestimation of the multifaceted features of necroptosis may influence the development of therapeutic approaches targeting necroptosis. In this review, we summarize current knowledge of the pathways involved in necroptosis as well as five important steps that determine its occurrence. The dual role of necroptosis in a variety of physiological and pathological conditions is also highlighted. Future studies and the development of therapeutic strategies targeting necroptosis should fully consider the complicated properties of this type of regulated cell death.


Asunto(s)
Necroptosis , Muerte Celular Regulada , Muerte Celular
5.
Front Genet ; 14: 1119017, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37091784

RESUMEN

Background: Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is a systemic autoimmune disease that may lead to end-stage renal disease. However, few specifific biomarkers are available for AAV-related renal injury. The aim of this study was to identify important biomarkers and explore new immune subtypes of AAV-related renal injury. Methods: In this study, messenger RNA expression profiles for antibody-associated vasculitis and AAV-associated kidney injury were downloaded from the Gene Expression Omnibus database. Weighted gene co-expression network analysis (WGCNA) was performed to identify the most relevant module genes to AAV. Key module genes from WGCNA were then intersected with AAV- and nephropathy-related genes from the Genecards database to identify key genes for AAV-associated kidney injury. Subsequently, the expression of key genes was validated in independent datasets and the correlation of genes with clinical traits of kidney injury was verified by the Nephroseq database. Finally, non-negative matrix factorization (NMF) clustering was performed to identify the immune subtypes associated with the key genes. Results: Eight co-key genes (AGTR2, ANPTL2, BDKRB1, CSF2, FGA, IL1RAPL2, PCDH11Y, and PGR) were identifified, and validated the expression levels independent datasets. Receiver operating characteristic curve analysis revealed that these eight genes have major diagnostic value as potential biomarkers of AAV-related renal injury. Through our comprehensive gene enrichment analyses, we found that they are associated with immune-related pathways. NMF clustering of key genes identified two and three immune-related molecular subtypes in the glomerular and tubular data, respectively. A correlation analysis with prognostic data from the Nephroseq database indicated that the expression of co-key genes was positively co-related with the glomerular filtration rate. Discussion: Altogether, we identifified 8 valuable biomarkers that firmly correlate with the diagnosis and prognosis of AAV-related renal injury. These markers may help identify new immune subtypes for AAV-related renal injury.

6.
Cell Death Dis ; 14(5): 318, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37169762

RESUMEN

Homogeneity and heterogeneity of the cytopathological mechanisms in different etiology-induced acute kidney injury (AKI) are poorly understood. Here, we performed single-cell sequencing (scRNA) on mouse kidneys with five common AKI etiologies (CP-Cisplatin, IRI-Ischemia-reperfusion injury, UUO-Unilateral ureteral obstruction, FA-Folic acid, and SO-Sodium oxalate). We constructed a potent multi-model AKI scRNA atlas containing 20 celltypes with 80,689 high-quality cells. The data suggest that compared to IRI and CP-AKI, FA- and SO-AKI exhibit injury characteristics more similar to UUO-AKI, which may due to tiny crystal-induced intrarenal obstruction. Through scRNA atlas, 7 different functional proximal tubular cell (PTC) subtypes were identified, we found that Maladaptive PTCs and classical Havcr1 PTCs but not novel Krt20 PTCs affect the pro-inflammatory and pro-fibrotic levels in different AKI models. And cell death and cytoskeletal remodeling events are widespread patterns of injury in PTCs. Moreover, we found that programmed cell death predominated in PTCs, whereas apoptosis and autophagy prevailed in the remaining renal tubules. We also identified S100a6 as a novel AKI-endothelial injury biomarker. Furthermore, we revealed that the dynamic and active immune (especially Arg1 Macro_2 cells) -parenchymal cell interactions are important features of AKI. Taken together, our study provides a potent resource for understanding the pathogenesis of AKI and early intervention in AKI progression at single-cell resolution.


Asunto(s)
Lesión Renal Aguda , Daño por Reperfusión , Ratones , Animales , Lesión Renal Aguda/genética , Lesión Renal Aguda/inducido químicamente , Túbulos Renales/patología , Daño por Reperfusión/metabolismo , Apoptosis/genética , Células Epiteliales/metabolismo , Riñón/patología
7.
Cell Death Dis ; 13(8): 693, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35941120

RESUMEN

Renal fibrosis is a common consequence of various progressive nephropathies, including obstructive nephropathy, and ultimately leads to kidney failure. Infiltration of inflammatory cells is a prominent feature of renal injury after draining blockages from the kidney, and correlates closely with the development of renal fibrosis. However, the underlying molecular mechanism behind the promotion of renal fibrosis by inflammatory cells remains unclear. Herein, we showed that unilateral ureteral obstruction (UUO) induced Gasdermin D (GSDMD) activation in neutrophils, abundant neutrophil extracellular traps (NETs) formation and macrophage-to-myofibroblast transition (MMT) characterized by α-smooth muscle actin (α-SMA) expression in macrophages. Gsdmd deletion significantly reduced infiltration of inflammatory cells in the kidneys and inhibited NETs formation, MMT and thereby renal fibrosis. Chimera studies confirmed that Gsdmd deletion in bone marrow-derived cells, instead of renal parenchymal cells, provided protection against renal fibrosis. Further, specific deletion of Gsdmd in neutrophils instead of macrophages protected the kidney from undergoing fibrosis after UUO. Single-cell RNA sequencing identified robust crosstalk between neutrophils and macrophages. In vitro, GSDMD-dependent NETs triggered p65 translocation to the nucleus, which boosted the production of inflammatory cytokines and α-SMA expression in macrophages by activating TGF-ß1/Smad pathway. In addition, we demonstrated that caspase-11, that could cleave GSDMD, was required for NETs formation and renal fibrosis after UUO. Collectively, our findings demonstrate that caspase-11/GSDMD-dependent NETs promote renal fibrosis by facilitating inflammation and MMT, therefore highlighting the role and mechanisms of NETs in renal fibrosis.


Asunto(s)
Trampas Extracelulares , Enfermedades Renales , Obstrucción Ureteral , Caspasas/metabolismo , Trampas Extracelulares/metabolismo , Fibrosis , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Riñón/patología , Enfermedades Renales/patología , Macrófagos/metabolismo , Miofibroblastos/metabolismo , Proteínas de Unión a Fosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros , Transducción de Señal , Obstrucción Ureteral/genética
8.
Front Bioeng Biotechnol ; 9: 717234, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34692653

RESUMEN

Lupus nephritis (LN) is an important driver of end-stage renal disease (ESRD). However, few biomarkers are available for evaluating the diagnosis and prognosis of LN. For this study, we downloaded microarray data of multiple LN expression profiles from the GEO database. We used the WGCNA and R limma packages to identify LN hub genes and differentially-expressed genes (DEGs). We identified nine co-DEGs in the intersection with LN-related genes from the Genecards database. We found DEGs that are primarily associated with immune-related functions and pathways (including with the complement pathway, primary immunodeficiency markers, and MHC-like protein complexes) through our comprehensive GSEA, GO, and KEGG enrichment analyses. We used other LN and SLE validation datasets and discovered six explicitly expressed co-DEGs: HLA-DMA, HLA-DPA1, HLA-DPB1, HLA-DRA, IL10RA, and IRF8 in the LN set; ROC and Precision-Recall curve analyses revealed that these six genes have a good diagnostic efficacy. The correlation analysis with prognostic data from the Nephroseq database indicates that the differential expression of these co-DEGs is associated with a low glomerular filtration rate in that cohort. Additionally, we used a single-cell LN database of immune cells (for the first time) and discovered these co-DEGs to be predominantly distributed in different types of macrophages and B cells. In conclusion, by integrating multiple approaches for DEGs discovery, we identified six valuable biomarkers that are strongly correlated with the diagnosis and prognosis of LN. These markers can help clarify the pathogenesis and improve the clinical management of LN.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA