Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(22): 15627-15639, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38771982

RESUMEN

Covalent peptide binders have found applications as activity-based probes and as irreversible therapeutic inhibitors. Currently, there is no rapid, label-free, and tunable affinity selection platform to enrich covalent reactive peptide binders from synthetic libraries. We address this challenge by developing a reversibly reactive affinity selection platform termed ReAct-ASMS enabled by tandem high-resolution mass spectrometry (MS/MS) to identify covalent peptide binders to native protein targets. It uses mixed disulfide-containing peptides to build reversible peptide-protein conjugates that can enrich for covalent variants, which can be sequenced by MS/MS after reduction. Using this platform, we identified covalent peptide binders against two oncoproteins, human papillomavirus 16 early protein 6 (HPV16 E6) and peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 protein (Pin1). The resulting peptide binders efficiently and selectively cross-link Cys58 of E6 at 37 °C and Cys113 of Pin1 at room temperature, respectively. ReAct-ASMS enables the identification of highly selective covalent peptide binders for diverse molecular targets, introducing an applicable platform to assist preclinical therapeutic development pipelines.


Asunto(s)
Péptidos , Péptidos/química , Proteínas Oncogénicas Virales/química , Humanos , Peptidilprolil Isomerasa de Interacción con NIMA/antagonistas & inhibidores , Peptidilprolil Isomerasa de Interacción con NIMA/química , Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Proteínas Represoras/antagonistas & inhibidores , Espectrometría de Masas en Tándem/métodos , Unión Proteica
2.
Exp Dermatol ; 33(5): e15101, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38770555

RESUMEN

Skin hyperpigmentation is mainly caused by excessive synthesis of melanin; however, there is still no safe and effective therapy for its removal. Here, we found that the dermal freezer was able to improve UVB-induced hyperpigmentation of guinea pigs without causing obvious epidermal damage. We also mimic freezing stimulation at the cellular level by rapid freezing and observed that freezing treatments <2.5 min could not decrease cell viability or induce cell apoptosis in B16F10 and Melan-A cells. Critically, melanin content and tyrosinase activity in two cells were greatly reduced after freezing treatments. The dramatic decrease in tyrosinase activity was associated with the downregulation of MITF, TYR, TRP-1 and TRP-2 protein expression in response to freezing treatments for two cells. Furthermore, our results first demonstrated that freezing treatments significantly reduced the levels of p-GSK3ß and ß-catenin and the nuclear accumulation of ß-catenin in B16F10 and Melan-A cells. Together, these data suggest that fast freezing treatments can inhibit melanogenesis-related gene expression in melanocytes by regulating the Wnt/ß-catenin signalling pathway. The inhibition of melanin production eventually contributed to the improvement in skin hyperpigmentation induced by UVB. Therefore, fast freezing treatments may be a new alternative of skin whitening in the clinic in the future.


Asunto(s)
Congelación , Hiperpigmentación , Melaninas , Melanocitos , Monofenol Monooxigenasa , Rayos Ultravioleta , Vía de Señalización Wnt , beta Catenina , Animales , Melaninas/biosíntesis , Melaninas/metabolismo , Melanocitos/metabolismo , Ratones , Hiperpigmentación/metabolismo , beta Catenina/metabolismo , Monofenol Monooxigenasa/metabolismo , Cobayas , Factor de Transcripción Asociado a Microftalmía/metabolismo , Supervivencia Celular , Oxidorreductasas Intramoleculares/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Apoptosis , Oxidorreductasas/metabolismo , Interferón Tipo I , Proteínas Gestacionales
3.
Angew Chem Int Ed Engl ; 62(19): e202300289, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36894520

RESUMEN

α-Klotho, an aging-related protein found in the kidney, parathyroid gland, and choroid plexus, acts as an essential co-receptor with the fibroblast growth factor 23 receptor complex to regulate serum phosphate and vitamin D levels. Decreased levels of α-Klotho are a hallmark of age-associated diseases. Detecting or labeling α-Klotho in biological milieu has long been a challenge, however, hampering the understanding of its role. Here, we developed branched peptides by single-shot parallel automated fast-flow synthesis that recognize α-Klotho with improved affinity relative to their monomeric versions. These peptides were further shown to selectively label Klotho for live imaging in kidney cells. Our results demonstrate that automated flow technology enables rapid synthesis of complex peptide architectures, showing promise for future detection of α-Klotho in physiological settings.


Asunto(s)
Glucuronidasa , Proteínas Klotho , Glucuronidasa/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Péptidos/metabolismo , Riñón/metabolismo
4.
Phytother Res ; 34(10): 2766-2777, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32430958

RESUMEN

Natural product corynoline is a unique isoquinoline alkaloid extracted from traditional Chinese medicine Corydalis bungeana Turcz, whereas its anticancer properties have not been investigated. In this study, we found that corynoline potently impairs the growth of melanoma cells, B16F10, and A375 in a concentration-dependent manner. Treatment of melanoma cells with corynoline results in G2 cell arrest accompanied by reduced cdc2 activation. Furthermore, corynoline triggers apoptosis of melanoma cells, which is associated with increased expression of Bax and cleaved caspase-3. Mechanistic study indicates that corynoline strongly induces reactive oxygen species (ROS) generation and subsequent DNA damage as evidenced by γ-H2AX accumulation. Notably, the effect of corynoline on melanoma cell cycle and apoptosis is abolished by a ROS scavenger N-acetyl cysteine (NAC), indicating a ROS-dependent mechanism. Finally, corynoline significantly inhibits in vivo B16F10 melanoma tumor growth accompanied by reduced expression of Ki-67 in tumor tissue. Taken together, our data suggest that corynoline suppresses melanoma cell growth in vitro and in vivo by inducing oxidative stress and represents a potential therapeutic agent for melanoma patients.


Asunto(s)
Alcaloides de Berberina/uso terapéutico , Productos Biológicos/química , Medicina Tradicional China/métodos , Melanoma/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Alcaloides de Berberina/farmacología , Humanos
5.
Lasers Med Sci ; 33(3): 581-588, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29270708

RESUMEN

The 1064-nm Q-switched Nd:YAG laser is demonstrated to be effective for non-ablative skin rejuvenation, but the molecular mechanism by which dermis responses to laser-induced damage and initiates skin remodeling is still unclear. HaCaT cells and 3T3 skin fibroblasts were irradiated with the 1064-nm Q-switched Nd:YAG laser at the different doses. Then, cells were collected and lysed for PCR and Western blot analysis. Cell viability was detected by Cell Counting Kit-8 (CCK-8) before and after laser irradiation. The expressions of S100A8, advanced glycosylation end product-specific receptor (RAGE) and inflammatory cytokines in two cell lines were markedly upregulated after laser treatments. The PCR, Western blot, and ELISA analysis showed the significant increase of type I and III procollagen in the 3T3 cells treated with the 1064-nm laser. Interestingly, si S100A8 effectively inhibited the expression of cytokines and collagen, while S100A8 treatments significantly increased them. P-p38 and p-p65 levels were also elevated after the 1064-nm laser irradiation, which is positively related with S100A8. Cell viability and reactive oxygen species (ROS) levels were not changed, while the content of superoxidase dismutase (SOD) in two cells was increased after laser irradiation. Our results demonstrated that the overexpression of S100A8 induced by the 1064-nm laser irradiation triggered inflammatory reactions in skin cells. The inflammatory microenvironment and improvement of skin antioxidant capacity contribute to new collagen synthesis in the skin cells. Thus, S100A8 was required for laser-induced new collagen synthesis in skin cells. p38/MAPK and NF-κB signal pathways were involved in S100A8-mediated inflammatory reactions in response to laser irradiation.


Asunto(s)
Calgranulina A/metabolismo , Láseres de Estado Sólido/uso terapéutico , Piel/metabolismo , Piel/efectos de la radiación , Animales , Calgranulina A/genética , Línea Celular , Forma de la Célula/efectos de la radiación , Supervivencia Celular/efectos de la radiación , Colágeno/biosíntesis , Colágeno/metabolismo , Femenino , Fibroblastos/metabolismo , Fibroblastos/efectos de la radiación , Humanos , Inflamación/patología , Queratinocitos/metabolismo , Queratinocitos/efectos de la radiación , Ratones , FN-kappa B/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Rejuvenecimiento , Transducción de Señal , Superóxido Dismutasa/metabolismo , Regulación hacia Arriba/genética , Regulación hacia Arriba/efectos de la radiación , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
6.
Lasers Med Sci ; 31(4): 673-8, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26914682

RESUMEN

The 800-nm diode laser is widely used for hair removal and also promotes collagen synthesis, but the molecular mechanism by which dermis responses to the thermal damage induced by the 800-nm diode laser is still unclear. Ten 2-month-old mice were irradiated with the 800-nm diode laser at 20, 40, and 60 J/cm(2), respectively. Skin samples were taken for PCR, Western blot analysis, and histological study at day 3 or 30 after laser irradiation. The expression of S100a8 and its two receptors (advanced glycosylation end product-specific receptor, RAGE and toll-like receptor 4, TRL4) was upregulated at day 3 after laser treatments. P-p65 levels were also elevated, causing the increase of cytokine (tumor necrosis factor, TNF-α and interleukin 6, IL-6) and MMPs (MMP1a, MMP9). At day 30, PCR and Western blot analysis showed significant increase of type I and III procollagen in the dermis treated with laser. Importantly, skin structure was markedly improved in the laser-irradiated skin compared with the control. Thus, it seemed that S100a8 upregulation triggered NF-κB signal pathway through RAGE and TLR4, responding to laser-induced dermis wound healing. The involvement of the NF-κB pathway in MMP gene transcription promoted the turnover of collagen in the skin, accelerating new collagen synthesis.


Asunto(s)
Colágeno/metabolismo , Láseres de Semiconductores/uso terapéutico , Terapia por Luz de Baja Intensidad/métodos , Transducción de Señal , Piel/efectos de la radiación , Animales , Calgranulina A/metabolismo , Colágeno/genética , Técnicas Cosméticas , Femenino , Expresión Génica/efectos de la radiación , Interleucina-6/metabolismo , Metaloproteinasa 13 de la Matriz/genética , Metaloproteinasa 13 de la Matriz/metabolismo , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Ratones , FN-kappa B/metabolismo , Piel/metabolismo , Envejecimiento de la Piel/efectos de la radiación , Factor de Necrosis Tumoral alfa/metabolismo , Regulación hacia Arriba
7.
Exp Dermatol ; 24(4): 275-9, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25611805

RESUMEN

Phlorizin is well known to inhibit sodium/glucose cotransporters in the kidney and intestine for the treatment of diabetes, obesity and stress hyperglycaemia. However, the effects of phlorizin against ultraviolet B (UVB) irradiation and its molecular mechanism are still unknown. We examined the effects of phlorizin on skin keratinocyte apoptosis, reactive oxygen species (ROS) production, pro-inflammatory responses after UVB irradiation and the changes of some signal molecules by in vitro and in vivo assay. We observed that phlorizin pretreatments inhibited HaCaT cell apoptosis and overproduction of ROS induced by UVB. Phlorizin also decreased the expression of UVB-induced pro-inflammatory cytokines, such as interleukin-1 beta (IL-1ß), interleukin-6 (IL-6) and interleukin-8 (IL-8) at the mRNA level. Topical application of phlorizin on UVB-exposed skin of nude mice prevented the formation of scaly skin and erythema, inhibited the increase of epidermal thickness and reduced acute inflammation infiltration in skin. Additionally, PCR, Western blot and immunohistochemical data showed that phlorizin reversed the overexpression of cyclooxygenase-2 (Cox-2) induced by UVB irradiation both in vitro and in vivo. The activation of p38 and JNK mitogen-activated protein kinases (MAPK) after UVB irradiation was also inhibited by phlorizin. These findings suggest that phlorizin is effective in protecting skin against UVB-induced skin damage by decreasing ROS overproduction, Cox-2 expression and the subsequent excessive inflammation reactions. It seemed that p38 and JNK MAPK signal pathways are involved in the regulation of the protective function of phlorizin.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Florizina/farmacología , Envejecimiento de la Piel/efectos de los fármacos , Envejecimiento de la Piel/efectos de la radiación , Piel/efectos de los fármacos , Piel/metabolismo , Rayos Ultravioleta/efectos adversos , Animales , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Línea Celular , Inhibidores de la Ciclooxigenasa 2/farmacología , Humanos , Inflamación/etiología , Inflamación/patología , Inflamación/prevención & control , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Especies Reactivas de Oxígeno/metabolismo , Envejecimiento de la Piel/fisiología
8.
Australas J Dermatol ; 56(1): e7-14, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24645968

RESUMEN

BACKGROUND/OBJECTIVES: The objective of this study was to investigate the effects of daidzein on collagen metabolism and its underlying mechanism in cultured skin fibroblast and nude mouse skin. METHODS: Skin fibroblasts were exposed to different concentrations of daidzein (0.5-50 µg/mL) for 24 h or 48 h, respectively. Female nude mice were treated topically with 200 µg/mL daidzein once a day for 6 weeks. Cell viability and cell cycle were determined by MTT and flow cytometer. The transcriptional activity of collagen type I was evaluated and the expression of procollagen, matrix metalloproteinase-1 (MMP1) and MMP2 were measured by real-time polymerase chain reaction. A Western blot analysis was applied to detect the levels of phosphorylated-Smad2 and Smad3. RESULTS: In the daidzein-treated cells the expression of type I procollagen increased markedly while the expressions of MMP1, and MMP2 was significantly inhibited. Additionally, the mouse skin showed more collagen deposition after daidzein treatment. The levels of transforming growth factor (TGF)-ß, phosphorylated-smad2 and smad3 were also higher in the daidzein treated skin fibroblasts than in the controls. CONCLUSIONS: The results showed that daidzein treatment can increase skin collagen synthesis and inhibit collagen degradation in vitro and in vivo. It seems that TGF-ß/smad signalling pathways play an important role in daidzein-induced collagen accumulation.


Asunto(s)
Colágeno Tipo I/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Isoflavonas/farmacología , Fitoestrógenos/farmacología , Transducción de Señal/efectos de los fármacos , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Femenino , Fibroblastos/metabolismo , Humanos , Metaloproteinasa 1 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/genética , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Fosforilación/efectos de los fármacos , Procolágeno/genética , Proteína Smad2/efectos de los fármacos , Proteína Smad2/metabolismo , Proteína Smad5/efectos de los fármacos , Proteína Smad5/metabolismo , Transcripción Genética/efectos de los fármacos , Factor de Crecimiento Transformador beta/efectos de los fármacos , Factor de Crecimiento Transformador beta/metabolismo
9.
JACS Au ; 4(4): 1334-1344, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38665650

RESUMEN

The kidney, parathyroid gland, and choroid plexus express the aging-related transmembrane protein α-Klotho, a coreceptor of the fibroblast growth factor 23 (FGF23) receptor complex. Reduced α-Klotho levels are correlated with chronic kidney disease and other age-related diseases, wherein they are released from membranes into circulation. Klotho's potential physiological action as a hormone is of current scientific interest. Part of the challenges associated with advancing these studies, however, has been the long-standing difficulty in detecting soluble α-Klotho in biofluids. Here, we describe the discovery of peptides that recognize α-Klotho with high affinity and selectivity by applying in-solution size-exclusion-based affinity selection-mass spectrometry (AS-MS). After two rounds of AS-MS and subsequent N-terminal modifications, the peptides improved their binding affinity to α-Klotho by approximately 2300-fold compared to the reported starting peptide Pep-10, previously designed based on the C-terminal region of FGF23. The lead peptide binders were shown to enrich α-Klotho from cell lysates and to label α-Klotho in kidney cells. Our results further support the utility of in-solution, label-free AS-MS protocols to discover peptide-based binders to target proteins of interest with high affinity and selectivity, resulting in functional probes for biological studies.

10.
Nutrients ; 15(3)2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36771401

RESUMEN

Hordenine is effective in treating hyperpigmentation, fighting diabetes and resisting fibrosis and acute inflammation. However, the role of Hordenine on hair growth has not been elucidated. Here, we found that Hordenine treatments significantly enhance proliferation of primary mouse dermal-papilla cells (DPCs) and increase the activity of DPCs in a dose-dependent manner. Additionally, Hordenine markedly promoted the elongation of the hair shaft in the model of in vitro-cultured mouse vibrissa follicle and accelerated hair regrowth in a mouse model of depilation-induced hair regeneration. Real-time PCR, Western Blot and immunofluorescent assays showed that nuclear ß-catenin and its downstream gene expression such as Lef1, Axin2, Cyclin D1 and ALP were greatly upregulated in DPCs and mouse hair follicles after Hordenine treatments. Moreover, the increased DPCs' proliferation and hair shaft elongation of cultured mouse vibrissa follicles induced by Hordenine treatments were rescued by a Wnt/ß-catenin signaling inhibitor, FH535. These data indicate that Hordenine can effectively enhance DPCs' activity and accelerate hair regrowth through activating the Wnt/ß-catenin signaling pathway. Therefore, these findings suggest Hordenine/its derivatives may be potentially used for preventing and treating alopecia in the future.


Asunto(s)
Folículo Piloso , Vía de Señalización Wnt , Ratones , Animales , beta Catenina/genética , beta Catenina/metabolismo , Células Cultivadas , Cabello/metabolismo , Proliferación Celular
11.
Chem Sci ; 14(44): 12484-12497, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38020382

RESUMEN

Human papillomavirus (HPV) infections account for nearly all cervical cancer cases, which is the fourth most common cancer in women worldwide. High-risk variants, including HPV16, drive tumorigenesis in part by promoting the degradation of the tumor suppressor p53. This degradation is mediated by the HPV early protein 6 (E6), which recruits the E3 ubiquitin ligase E6AP and redirects its activity towards ubiquitinating p53. Targeting the protein interaction interface between HPV E6 and E6AP is a promising modality to mitigate HPV-mediated degradation of p53. In this study, we designed a covalent peptide inhibitor, termed reactide, that mimics the E6AP LXXLL binding motif by selectively targeting cysteine 58 in HPV16 E6 with quantitative conversion. This reactide provides a starting point in the development of covalent peptidomimetic inhibitors for intervention against HPV-driven cancers.

12.
J Dermatol Sci ; 107(1): 17-23, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35840473

RESUMEN

BACKGROUND: Yohimbine hydrochloride (YH) is a prescription drug to treat erectile dysfunction. It also had potential in fighting high blood pressure and diabetic neuropathy as well as promoting weight loss. OBJECTIVE: The aim of the study is to investigate the anti-melanogenic function of yohimbine hydrochloride and reveal its underlying molecular mechanism. METHODS: B16F10 mouse melanoma cells, Melan-A murine melanocyte, Zebrafish embryos and C57BL/6 mouse ear skins were treated with different concentrations of YH. The extracellular and cellular melanin content was detected by spectrometry. The expression of microphthalmia-associated transcription factor (MITF), tyrosinase and the activities of Wnt/ß-catenin and p38/MAPK signal pathways were determined by RT-qPCR, Western blot analysis and immunofluorescent staining. RESULTS: Melanin production could be effectively inhibited by YH at the safe concentration in vitro and in vivo. Q-PCR and WB results showed that the expression of MITF and tyrosinase were strongly downregulated after YH treatments along with the reduction of tyrosinase activity. YH markedly inhibited ß-catenin nuclear accumulation and p38 phosphorylation in B16F10 cells compared with the untreated controls. Importantly, the increase of MITF expression induced by ß-catenin activator BIO and p38 activator anisomycin could be fully reversed by YH treatments. CONCLUSIONS: These results indicate that YH can function as an anti-melanogenic agent, at least in part, by inhibiting Wnt/ß-catenin and p38/MAPK signal pathways. Therefore, YH may be potentially used as a skin-whitening compound for preventing hyperpigmentation disorders in the future.


Asunto(s)
Melaninas , Melanoma Experimental , Animales , Línea Celular Tumoral , Ratones , Ratones Endogámicos C57BL , Factor de Transcripción Asociado a Microftalmía , Monofenol Monooxigenasa , Transducción de Señal , Yohimbina , Pez Cebra , beta Catenina , Proteínas Quinasas p38 Activadas por Mitógenos
13.
J Invest Dermatol ; 142(9): 2334-2342.e8, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35304248

RESUMEN

P2RY6 is highly expressed in skin keratinocytes, but its function in skin diseases is unclear. We use a two-step chemical induction method to induce mouse skin tumor formation. Multiple in vitro and in vivo assays were used to explore the role of P2RY6 in skin tumors. We report that P2ry6-deficient mice exhibit marked resistance to 7,12-dimethylbenz[a]anthracene/12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin papilloma formation compared with wild-type mice. Consistent with these findings, epidermal hyperplasia in response to TPA was suppressed in the P2ry6-knockout or MRS2578 (P2RY6 antagonist)-treated mice. The dramatic decrease in hyperplasia and tumorigenesis due to P2ry6 disruption was associated with the suppression of TPA-induced keratinocyte proliferation and inflammatory reactions. Notably, P2ry6 deletion prevented the TPA-induced increase in YAP nuclear accumulation and its downstream gene expression in an MST/LATS1-dependent manner. On TPA stimulation, enhanced activation of MAPK/extracellular signal‒regulated kinase kinase 1 and ß-catenin were also impaired in P2ry6-knockout primary keratinocytes, tumor tissues, or MRS2578-treated HaCaT cells. Moreover, mutual promotion of the YAP and ß-catenin signaling pathways was observed in normal skin cells treated with TPA, whereas P2ry6 deletion could inhibit their crosstalk by regulating MAPK/extracellular signal‒regulated kinase kinase 1. Thus, P2RY6 is a critical positive regulator of skin tumorigenesis through the modulation of the Hippo/YAP and Wnt/ß-catenin signaling pathways.


Asunto(s)
Receptores Purinérgicos P2 , Neoplasias Cutáneas , Vía de Señalización Wnt , 9,10-Dimetil-1,2-benzantraceno/toxicidad , Animales , Carcinogénesis/patología , Hiperplasia/patología , Queratinocitos/metabolismo , Ratones , Receptores Purinérgicos P2/metabolismo , Piel/patología , Neoplasias Cutáneas/inducido químicamente , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Acetato de Tetradecanoilforbol/toxicidad , Proteínas Señalizadoras YAP/metabolismo , beta Catenina/metabolismo
14.
Cell Death Dis ; 13(11): 1004, 2022 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-36437247

RESUMEN

Blocked cellular differentiation is a critical pathologic hallmark of acute myeloid leukemia (AML). Here, we showed that genetic activation of the orphan GPCR GPR132 significantly induced cell differentiation of AML both in vitro and in vivo, indicating that GPR132 is a potential trigger of myeloid differentiation. To explore the therapeutic potential of GPR132 signaling, we screened and validated a natural product 8-gingerol (8GL) as a GPR132 agonist. Notably, GPR132 activation by 8GL promoted differentiation and reduced colony formation in human AML cell lines with diverse genetic profiles. Mechanistic studies revealed that 8GL treatment inhibits the activation of the mammalian target of rapamycin (mTOR), a regulator of AML cell differentiation blockade, via activating GPR132-Gs-PKA pathway. We further showed that the combination of 8GL and an mTOR inhibitor synergistically elicited AML cell differentiation in vitro. Importantly, 8GL alone or in combination with an mTOR inhibitor remarkably impaired tumor growth and extended mouse survival in an AML xenograft model accompanied by enhanced cell differentiation. Notably, genetic or pharmacological activation of GPR132 triggered the differentiation of human primary AML cells. In summary, this study demonstrated that activation of orphan GPR132 represents a potential strategy for inducing myeloid differentiation in AML patients.


Asunto(s)
Diferenciación Celular , Leucemia Mieloide Aguda , Receptores Acoplados a Proteínas G , Animales , Humanos , Ratones , Proteínas Portadoras/metabolismo , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Mamíferos , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
15.
Commun Chem ; 5(1): 128, 2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36697672

RESUMEN

Establishing structure-activity relationships is crucial to understand and optimize the activity of peptide-based inhibitors of protein-protein interactions. Single alanine substitutions provide limited information on the residues that tolerate simultaneous modifications with retention of biological activity. To guide optimization of peptide binders, we use combinatorial peptide libraries of over 4,000 variants-in which each position is varied with either the wild-type residue or alanine-with a label-free affinity selection platform to study protein-ligand interactions. Applying this platform to a peptide binder to the oncogenic protein MDM2, several multi-alanine-substituted analogs with picomolar binding affinity were discovered. We reveal a non-additive substitution pattern in the selected sequences. The alanine substitution tolerances for peptide ligands of the 12ca5 antibody and 14-3-3 regulatory protein are also characterized, demonstrating the general applicability of this new platform. We envision that binary combinatorial alanine scanning will be a powerful tool for investigating structure-activity relationships.

16.
Lasers Med Sci ; 26(6): 837-43, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21892789

RESUMEN

The 800-nm diode laser is used clinically for hair removal and leg vein clearance. However, the effects of the laser on skin collagen synthesis have not been established. This study aims to research whether the 800-nm laser can be used for non-ablative rejuvenation and its possible mechanism by using an animal model. Eight 2-month-old rats were irradiated with the 800-nm diode laser at 20, 40, and 60 J/cm(2), respectively. Skin samples were taken for histological study and dermal thickness measurement at day 30 after laser irradiation. The expression of procollagen type I, III, IV, transforming growth factor-ß (TGF-ß), Smad2, 3, 4, and phosphorylated-Smad2, 3 in the rat skin was analyzed 24 h after completing all laser treatments by using RT-PCR and Western blot. Immunohistochemistry was performed to evaluate the content of type I collagen in the skin at day 30 after laser irradiation. The 800-nm diode laser treatments markedly improved the histological structure and increased dermal thickness compared to the non-irradiated controls. Laser irradiation at 40 J/cm(2) significantly up-regulated the expression of procollagen type I and IV, TGF-ß and Smad2, 3, 4. The p-Smad2 and p-Smad3 levels were also enhanced in the laser-irradiated skin. The 800-nm laser is effective in improving skin structure and inducing skin new collagen expression. New collagen synthesis induced by the 800-nm laser was mediated by TGF-ß/Smad signaling pathway. Thus, it seemed that the 800-nm laser could be used for non-ablative rejuvenation in the future.


Asunto(s)
Colágeno/biosíntesis , Láseres de Semiconductores/uso terapéutico , Terapia por Luz de Baja Intensidad , Piel/metabolismo , Piel/efectos de la radiación , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Secuencia de Bases , Colágeno/genética , Cartilla de ADN/genética , Femenino , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de la radiación , Envejecimiento de la Piel/genética , Envejecimiento de la Piel/fisiología , Envejecimiento de la Piel/efectos de la radiación , Proteínas Smad/genética , Factor de Crecimiento Transformador beta/genética , Regulación hacia Arriba/efectos de la radiación
17.
ACS Cent Sci ; 7(1): 156-163, 2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33527085

RESUMEN

The ß-coronavirus SARS-CoV-2 has caused a global pandemic. Affinity reagents targeting the SARS-CoV-2 spike protein are of interest for the development of therapeutics and diagnostics. We used affinity selection-mass spectrometry for the rapid discovery of synthetic high-affinity peptide binders for the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. From library screening with 800 million synthetic peptides, we identified three sequences with nanomolar affinities (dissociation constants K d = 80-970 nM) for RBD and selectivity over human serum proteins. Nanomolar RBD concentrations in a biological matrix could be detected using the biotinylated lead peptide in ELISA format. These peptides do not compete for ACE2 binding, and their site of interaction on the SARS-CoV-2-spike-RBD might be unrelated to the ACE2 binding site, making them potential orthogonal reagents for sandwich immunoassays. These findings serve as a starting point for the development of SARS-CoV-2 diagnostics or conjugates for virus-directed delivery of therapeutics.

18.
Lasers Med Sci ; 25(5): 719-26, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20490593

RESUMEN

Cultured human skin fibroblasts were irradiated twice successively with the 1.5 J/cm(2) of 532-nm and 1,064-nm lasers, respectively. The mRNA of procollagen, matrix metalloproteinases (MMPs), tissue inhibitors of metalloproteinases (TIMPs), heat-shock protein 70 (Hsp70), interleukin-6 (IL-6) and transforming growth factor beta (TGF-beta) were analyzed at 24 and 48 h post-irradiation by using RT-PCR. Both lasers significantly increased the expression of type I and III procollagen, TIMP1, and TIMP2, but decreased MMP1 and MMP2 expression. The 1,064-nm laser initiated TGF-beta expression while the 532-nm laser elicited the increase of Hsp70 and IL-6. The increase/decrease rates of procollagen, TIMPs and MMPs for the 1,064-nm laser were higher than that of the 532-nm laser. Thus, both lasers effectively accelerated collagen synthesis and inhibited collagen degradation. Collagen synthesis induced by the 1,064-nm laser might be partly due to the upregulation of TGF-beta expression, while the increase of Hsp70 and IL-6 might be partly responsible for collagen synthesis stimulated by the 532-nm laser. With the parameters used in this study, the 1,064-nm infrared laser is more effective in promoting the beneficial molecular activities than the 532-nm visible laser.


Asunto(s)
Colágeno/metabolismo , Colágeno/efectos de la radiación , Láseres de Estado Sólido/uso terapéutico , Terapia por Luz de Baja Intensidad , Piel/metabolismo , Piel/efectos de la radiación , Secuencia de Bases , Células Cultivadas , Colágeno/genética , Cartilla de ADN/genética , Fibroblastos/metabolismo , Fibroblastos/efectos de la radiación , Expresión Génica/efectos de la radiación , Proteínas HSP70 de Choque Térmico/genética , Humanos , Interleucina-6/genética , Metaloproteinasas de la Matriz/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Envejecimiento de la Piel/efectos de la radiación , Inhibidores Tisulares de Metaloproteinasas/genética , Factor de Crecimiento Transformador beta/genética
19.
Zhonghua Xin Xue Guan Bing Za Zhi ; 38(3): 264-7, 2010 Mar.
Artículo en Zh | MEDLINE | ID: mdl-20450571

RESUMEN

OBJECTIVE: To explore the effects of glucose concentration fluctuation on function of cultured bovine arterial endothelial cells and underlying mechanism. METHODS: The thoracic aorta of newborn calf was used for primary endothelial cells culture. Cells were divided into 3 groups and cultured for 48 h: control group (C, 5.5 mmol/L), constant high glucose group (HG, 30 mmol/L) and glucose fluctuation (GF, three circles of 2 h 30 mmol/L followed by 3 h 5.5 mmol/L, 30 mmol/L overnight, repeat the whole procedure on the following day) groups. The membranes fluidity of endothelial cells was detected by fluorescence polarization method. The contents of sorbierite, aldose reductase (AR), sorbitol dehydrogenase (SDH) and advanced glycation end products (AGEs) were measured. RAGE, eNOS and ET-1 mRNA expressions were detected by semi-quantitative RT-PCR. RESULTS: The membranes fluidity of endothelial cells in HG or GF group were significantly decreased compared with the control group (all P < 0.01) and significantly lower in GF group than those in HG group (all P < 0.01). Sorbierite, AR and AGEs concentrations were significantly higher in HG and GF groups than those in control group (all P < 0.01) and AR and AGEs concentrations were significantly higher in GF group than that in HG group (all P < 0.01). SDH of endothelial cells in HG or GF group were decreased compared with the control group and lower in GF group than in HG group (all P < 0.05). In addition, the mRNA levels of RAGE, eNOS and ET-1 were significantly upregulated compared with the control group (all P < 0.01). CONCLUSIONS: Glucose concentration fluctuation can result in more severe bovine arterial endothelial cells dysfunction than high glucose via activating polyols metabolic pathways, upregulating the expression of AGEs, eNOS and ET-1. Therefore, glucose concentration fluctuation might play a crucial role on macrovascular complications of diabetes.


Asunto(s)
Células Endoteliales/patología , Endotelio Vascular/citología , Glucosa/metabolismo , Aldehído Reductasa/análisis , Animales , Aorta Torácica/citología , Bovinos , Células Cultivadas , Células Endoteliales/metabolismo , Endotelina-1/análisis , Endotelio Vascular/metabolismo , Productos Finales de Glicación Avanzada/análisis , L-Iditol 2-Deshidrogenasa/análisis , Fluidez de la Membrana , Óxido Nítrico Sintasa de Tipo III/análisis
20.
J Invest Dermatol ; 140(9): 1706-1712.e4, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32035093

RESUMEN

It is known that LGR4 plays an important role in hair follicle (HF) development, but the impact of LGR4 on the hair cycle is still unclear. In this study, we have found that K14-Cre-mediated skin epithelia-specific deletion of Lgr4 results in delayed anagen entry during the physiological hair cycle and compromised HF regeneration upon transplantation. We show that, although Lgr4 deletion does not appear to affect the number of quiescent HF stem cells, it leads to reduced numbers of LGR5+ and actively proliferating stem cells in the HFs. Moreover, LGR4-deficient HFs show molecular changes consistent with decreased mTOR and Wnt signaling but upregulated BMP signaling. Importantly, the reactivation of the protein kinase B pathway by injecting the protein kinase B activator SC79 in Lgr4-/- mice can effectively reverse the hair cycle delay. Together, these data suggest that LGR4 promotes the normal hair cycle by activating HF stem cells and by influencing the activities of multiple signaling pathways that are known to regulate HF stem cells. Our study also implicates LGR4 as a potential target for treating hair disorder in the future.


Asunto(s)
Células Madre Adultas/fisiología , Folículo Piloso/crecimiento & desarrollo , Receptores Acoplados a Proteínas G/metabolismo , Acetatos/administración & dosificación , Células Madre Adultas/efectos de los fármacos , Animales , Benzopiranos/administración & dosificación , Proteínas Morfogenéticas Óseas/metabolismo , Proliferación Celular/efectos de los fármacos , Femenino , Folículo Piloso/citología , Folículo Piloso/efectos de los fármacos , Masculino , Ratones , Ratones Noqueados , Modelos Animales , Proteínas Proto-Oncogénicas c-akt/agonistas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores Acoplados a Proteínas G/genética , Regeneración/efectos de los fármacos , Piel/citología , Piel/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Regulación hacia Arriba , Vía de Señalización Wnt/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA