Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Ethnopharmacol ; 307: 116091, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-36592823

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Qidan Tiaozhi capsule (QD), a traditional Chinese medicine, has been used to treat metabolic syndrome for over a decade. However, the mechanism of QD in the treatment of metabolic syndrome is still unknown. AIM OF THE STUDY: Growing studies demonstrate that impaired mitophagy is one of the important causes of metabolic syndrome. Thus, this research aims to investigate the mechanism of mitophagy in the QD treatment of metabolic syndrome. MATERIALS AND METHODS: Network pharmacology and molecular docking were used to probe the mechanism of QD treatment of metabolic syndrome. In an oleic acid-induced cell model, glucose consumption and uptake capacity, triglyceride (TG), total cholesterol (TC), malonaldehyde (MDA), superoxide dismutase (SOD) and ROS levels, and mitochondrial membrane potential (MMP) were examined. mRFP-GFP-LC3 adenovirus and GFP-LC3 lentivirus were used to examine the effect of QD on mitophagy. The IRS2-PI3K and AMPK/PINK1-Parkin signal pathways were also determined. What's more, the PINK1 gene was silenced to verify the above findings. In a high-fat diet-fed mouse model, body weight, organ indexes, OGTT, ITT, HOMA-IR, insulin sensitivity, serum MDA, SOD, TC, TG, LDL-C and HDL-C, hepatic TC, TG, LDL-C and HDL-C levels, hepatic steatosis, and IRS2-PI3K and AMPK/PINK1-Parkin signal pathways were investigated. RESULTS: Results from network pharmacology and molecular docking suggested that QD might suppress oxidative stress to improve metabolic syndrome. In an oleic acid-induced cell model, compared with the model group, enhanced glucose consumption and uptake ability, inhibited intracellular lipid accumulation, TC, TG, MDA and ROS levels, and increased SOD level and MMP were found in QD groups. And mitophagy levels, IRS2-PI3K and AMPK/PINK1-Parkin signal pathways were promoted. Interestingly, PINK1 silencing reversed the therapeutic action of QD on oleic acid-induced cells. In high-fat diet-fed mice, inhibited body weight, abdominal fat indexes, liver indexes, HOMA-IR, serum and hepatic TC, TG and LDL-C, serum MDA and hepatic steatosis, and increased insulin sensitivity, serum and hepatic HDL-C, serum SOD, and activated IRS2-PI3K and AMPK/PINK1-Parkin signal pathways were found in QD groups. CONCLUSION: QD activates AMPK/PINK1-Parkin-mediated mitophagy to suppress oxidative stress to treat metabolic syndrome.


Asunto(s)
Medicamentos Herbarios Chinos , Hígado Graso , Resistencia a la Insulina , Síndrome Metabólico , Mitofagia , Animales , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , LDL-Colesterol , Síndrome Metabólico/tratamiento farmacológico , Mitofagia/efectos de los fármacos , Simulación del Acoplamiento Molecular , Ácido Oléico/farmacología , Fosfatidilinositol 3-Quinasas , Especies Reactivas de Oxígeno/metabolismo , Triglicéridos , Ubiquitina-Proteína Ligasas/metabolismo , Medicamentos Herbarios Chinos/farmacología
2.
Phytomedicine ; 120: 155041, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37678054

RESUMEN

BACKGROUND: Psoriasis is an immune-mediated chronic inflammatory skin disease characterized by well-defined erythema and white scales, which affects approximately 2% of the worldwide population and causes long-term distress to patients. Therefore, development of safe and effective therapeutic drugs is imminent. Autophagy, an evolutionarily conserved catabolic process, degrades intracellular constituents to maintain cellular energy homeostasis. Numerous studies have revealed that autophagy is closely related to immune function, such as removal of intracellular bacteria, inflammatory cytokine secretion, antigen presentation, and lymphocyte development. Phytochemicals derived from natural plants are often used to treat psoriasis due to their unique therapeutic properties and favorable safety. So far, a mass of phytochemicals have been proven to be able to activate autophagy and thus alleviate psoriasis. This review aimed to provide directions for finding phytochemicals that target autophagy to treat psoriasis. METHODS: The relevant literatures were collected from classical TCM books and a variety of databases (PubMed, Google Scholar, ScienceDirect, Springer Link, Web of Science and China National Knowledge Infrastructure) till December 2022. Search terms were "Phytochemical", "Psoriasis" and "Autophagy". The retrieved data followed PRISMA criteria (preferred reporting items for systematic review). RESULTS: Phytochemicals treat psoriasis mainly through regulating immune cell function, inhibiting excessive inflammatory response, and reducing oxidative stress. While the role and mechanism of autophagy in the pathogenesis of psoriasis have been confirmed in human trials, most of the evidence for phytochemicals that target autophagy to treat psoriasis comes from animal studies. The research focusing on the role of phytochemical-mediated autophagy in the prevention and treatment of psoriasis is limited, and the definite relationship between phytochemical-regulated autophagy and treatment of psoriasis still deserves further experimental confirmation. CONCLUSIONS: Phytochemicals with autophagic activities will provide new insights into the therapeutic intervention for psoriasis.


Asunto(s)
Psoriasis , Animales , Humanos , Psoriasis/tratamiento farmacológico , Autofagia , Piel , China , Bases de Datos Factuales
3.
J Nat Med ; 77(4): 712-720, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37306932

RESUMEN

Psoriasis is a chronic inflammatory skin disorder characterized by abnormal keratinocytes proliferation and multiple immune cells infiltration in the dermis and epidermis. Although most psoriasis-related researches have been concentrated on the interleukin-23 (IL-23)/interleukin-17 (IL-17) axis, new data suggest that keratinocytes also play a pivotal role in psoriasis. Previously, we found that punicalagin (PUN), a bioactive ellagitannin extracted from Pericarpium Granati (the pericarpium of Punica granatum L.), exerts a therapeutic effect on psoriasis. However, the underlying mechanism, especially its potential modulatory effect on keratinocytes, remains obscure. Our study aims to reveal the potential regulatory effect and its underlying cellular mechanism of PUN on the hyperproliferation of keratinocytes. We used tumor necrosis factor α (TNF-α), IL-17A and interleukin-6 (IL-6) to induce abnormal proliferation of HaCaT cells (Human Keratinocytes Cells) in vitro. Then, we evaluated the effects of PUN through MTT assay, EdU staining and cell cycle detection. Finally, we explored the underlying cellular mechanisms of PUN via RNA-sequencing, WB in vitro and in vivo. Here, we found that PUN can directly and dose-dependently decrease TNF-α, IL-17A and IL-6-induced abnormal proliferation of HaCaT cells in vitro. Mechanically, PUN suppresses the hyperproliferation of keratinocytes through repressing S-phase kinase-associated protein 2 (SKP2) expression in vitro and in vivo. Moreover, overexpression of SKP2 can partly abolish PUN-mediated inhibition of aberrantly proliferative keratinocytes. These results illustrate that PUN can reduce the severity of psoriasis through directly repressing SKP2-mediated abnormal proliferation of keratinocytes, which gives new insight into the therapeutic mechanism of PUN on psoriasis. Moreover, these findings imply that PUN might be a promising drug candidate for the treatment of psoriasis.


Asunto(s)
Taninos Hidrolizables , Psoriasis , Humanos , Taninos Hidrolizables/farmacología , Taninos Hidrolizables/uso terapéutico , Interleucina-17/metabolismo , Interleucina-17/farmacología , Interleucina-17/uso terapéutico , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Queratinocitos , Psoriasis/tratamiento farmacológico , Psoriasis/patología , Proliferación Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA