Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Physiol Heart Circ Physiol ; 321(1): H242-H252, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34085841

RESUMEN

Disturbed balance between matrix metalloproteinases (MMPs) and their respective tissue inhibitors (TIMPs) is a well-recognized pathophysiological component of pulmonary arterial hypertension (PAH). Both classes of proteinases have been associated with clinical outcomes as well as with specific pathological features of ventricular dysfunction and pulmonary arterial remodeling. The purpose of this study was to evaluate the circulating levels of MMPs and TIMPs in children with PAH undergoing the same-day cardiac magnetic resonance imaging (MRI) and right heart catheterization. Children with PAH (n = 21) underwent a same-day catheterization, comprehensive cardiac MRI evaluation, and blood sample collection for proteomic analysis. Correlative analysis was performed between protein levels and 1) standard PAH indices from catheterization, 2) cardiac MRI hemodynamics, and 3) pulmonary arterial stiffness. MMP-8 was significantly associated with the right ventricular end-diastolic volume (R = 0.45, P = 0.04). MMP-9 levels were significantly associated with stroke volume (R = -0.49, P = 0.03) and pulmonary vascular resistance (R = 0.49, P = 0.03). MMP-9 was further associated with main pulmonary arterial stiffness evaluated by relative area change (R = -0.79, P < 0.01).TIMP-2 and TIMP-4 levels were further associated with the right pulmonary artery pulse wave velocity (R = 0.51, P = 0.03) and backward compression wave (R = 0.52, P = 0.02), respectively. MMPs and TIMPs warrant further clinically prognostic evaluation in conjunction with the conventional cardiac MRI hemodynamic indices.NEW & NOTEWORTHY Metalloproteinases have been associated with clinical outcomes in pulmonary hypertension and with specific pathological features of ventricular dysfunction and pulmonary arterial remodeling. In this study, we demonstrated that plasma circulating levels of metalloproteinases and their inhibitors are associated with standard cardiac MRI hemodynamic indices and with the markers of proximal pulmonary arterial stiffness. Particularly, MMP-9 and TIMP-2 were associated with several different markers of pulmonary arterial stiffness. These findings suggest the interplay between the extracellular matrix (ECM) remodeling and overall hemodynamic status in children with PAH might be assessed using the peripheral circulating MMP and TIMP levels.


Asunto(s)
Hipertensión Pulmonar/fisiopatología , Metaloproteinasas de la Matriz/sangre , Inhibidores Tisulares de Metaloproteinasas/sangre , Rigidez Vascular/fisiología , Función Ventricular/fisiología , Adolescente , Presión Arterial/fisiología , Niño , Femenino , Hemodinámica/fisiología , Humanos , Hipertensión Pulmonar/sangre , Masculino , Arteria Pulmonar/fisiopatología
2.
Biochim Biophys Acta Mol Basis Dis ; 1864(1): 126-132, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28970008

RESUMEN

Trisomy 21 (Down Syndrome, DS) is the most common chromosomal anomaly. Although DS is mostly perceived as affecting cognitive abilities and cardiac health, individuals with DS also exhibit dysregulated immune functions. Levels of pro-inflammatory cytokines are increased, but intrinsic alterations of innate immunity are understudied in DS. Furthermore, elevated Reactive Oxygen Species (ROS) are well documented in individuals with DS, further exacerbating inflammatory processes. Chronic inflammation and oxidative stress are often precursors of subsequent tissue destruction and pathologies, which affect a majority of persons with DS. Together with ROS, the second messenger ion Ca2+ plays a central role in immune regulation. TRPM2 (Transient Receptor Potential Melastatin 2) is a Ca2+-permeable ion channel that is activated under conditions of oxidative stress. The Trpm2 gene is located on human Chromosome 21 (Hsa21). TRPM2 is strongly represented in innate immune cells, and numerous studies have documented its role in modulating inflammation. We have previously found that as a result of suboptimal cytokine production, TRPM2-/- mice are highly susceptible to the bacterial pathogen Listeria monocytogenes (Lm). We therefore used Lm infection to trigger and characterize immune responsiveness in the DS mouse model Dp10(yey), and to investigate the potential contribution of TRPM2. In comparison to wildtype (WT), Dp10(yey) mice show an increased resistance against Lm infection and higher IFNγ serum concentrations. Using a gene elimination approach, we show that these effects correlate with Trpm2 gene copy number, supporting the notion that Trpm2 might promote hyperinflammation in DS.


Asunto(s)
Citocinas/metabolismo , Síndrome de Down/patología , Canales Catiónicos TRPM/fisiología , Animales , Modelos Animales de Enfermedad , Síndrome de Down/genética , Síndrome de Down/metabolismo , Femenino , Inmunidad Innata/genética , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Listeria monocytogenes/inmunología , Listeriosis/genética , Listeriosis/inmunología , Listeriosis/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Especies Reactivas de Oxígeno/metabolismo , Canales Catiónicos TRPM/genética
3.
Annu Rev Physiol ; 75: 23-47, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23216413

RESUMEN

The vascular adventitia acts as a biological processing center for the retrieval, integration, storage, and release of key regulators of vessel wall function. It is the most complex compartment of the vessel wall and is composed of a variety of cells, including fibroblasts, immunomodulatory cells (dendritic cells and macrophages), progenitor cells, vasa vasorum endothelial cells and pericytes, and adrenergic nerves. In response to vascular stress or injury, resident adventitial cells are often the first to be activated and reprogrammed to influence the tone and structure of the vessel wall; to initiate and perpetuate chronic vascular inflammation; and to stimulate expansion of the vasa vasorum, which can act as a conduit for continued inflammatory and progenitor cell delivery to the vessel wall. This review presents the current evidence demonstrating that the adventitia acts as a key regulator of vascular wall function and structure from the outside in.


Asunto(s)
Adventicia/fisiología , Vasos Sanguíneos/citología , Vasos Sanguíneos/fisiología , Adventicia/citología , Animales , Fibroblastos/citología , Fibroblastos/fisiología , Humanos , Macrófagos/citología , Macrófagos/fisiología , Células Madre/citología , Células Madre/fisiología , Estrés Fisiológico/fisiología , Vasa Vasorum/citología , Vasa Vasorum/fisiología
4.
Circ Res ; 114(1): 67-78, 2014 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-24122720

RESUMEN

RATIONALE: Pulmonary hypertensive remodeling is characterized by excessive proliferation, migration, and proinflammatory activation of adventitial fibroblasts. In culture, fibroblasts maintain a similar activated phenotype. The mechanisms responsible for generation/maintenance of this phenotype remain unknown. OBJECTIVE: We hypothesized that aberrant expression of microRNA-124 (miR-124) regulates this activated fibroblast phenotype and sought to determine the signaling pathways through which miR-124 exerts effects. METHODS AND RESULTS: We detected significant decreases in miR-124 expression in fibroblasts isolated from calves and humans with severe pulmonary hypertension. Overexpression of miR-124 by mimic transfection significantly attenuated proliferation, migration, and monocyte chemotactic protein-1 expression of hypertensive fibroblasts, whereas anti-miR-124 treatment of control fibroblasts resulted in their increased proliferation, migration, and monocyte chemotactic protein-1 expression. Furthermore, the alternative splicing factor, polypyrimidine tract-binding protein 1, was shown to be a direct target of miR-124 and to be upregulated both in vivo and in vitro in bovine and human pulmonary hypertensive fibroblasts. The effects of miR-124 on fibroblast proliferation were mediated via direct binding to the 3' untranslated region of polypyrimidine tract-binding protein 1 and subsequent regulation of Notch1/phosphatase and tensin homolog/FOXO3/p21Cip1 and p27Kip1 signaling. We showed that miR-124 directly regulates monocyte chemotactic protein-1 expression in pulmonary hypertension/idiopathic pulmonary arterial hypertension fibroblasts. Furthermore, we demonstrated that miR-124 expression is suppressed by histone deacetylases and that treatment of hypertensive fibroblasts with histone deacetylase inhibitors increased miR-124 expression and decreased proliferation and monocyte chemotactic protein-1 production. CONCLUSIONS: Stable decreases in miR-124 expression contribute to an epigenetically reprogrammed, highly proliferative, migratory, and inflammatory phenotype of hypertensive pulmonary adventitial fibroblasts. Thus, therapies directed at restoring miR-124 function, including histone deacetylase inhibitors, should be investigated.


Asunto(s)
Movimiento Celular , Proliferación Celular , Fibroblastos/metabolismo , Hipertensión Pulmonar/metabolismo , MicroARNs/metabolismo , Regiones no Traducidas 3' , Adulto , Animales , Bovinos , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Hipertensión Pulmonar Primaria Familiar , Femenino , Fibroblastos/fisiología , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Histona Desacetilasas/metabolismo , Humanos , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/patología , Inflamación/metabolismo , Masculino , Ratones Endogámicos C57BL , MicroARNs/genética , Fenotipo , Proteína de Unión al Tracto de Polipirimidina/genética , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Unión Proteica , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Ratas , Ratas Wistar , Receptor Notch1/genética , Receptor Notch1/metabolismo , Transducción de Señal , Transcripción Genética
5.
Paediatr Respir Rev ; 16(4): 225-31, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26036720

RESUMEN

Pediatric pulmonary arterial hypertension (PAH) is an uncommon disease that can occur in neonates, infants, and children, and is associated with high morbidity and mortality. Despite advances in treatment strategies over the last two decades, the underlying structural and functional changes to the pulmonary arterial circulation are progressive and lead eventually to right heart failure. The management of PAH in children is complex due not only to the developmental aspects but also because most evidence-based practices derive from adult PAH studies. As such, the pediatric clinician would be greatly aided by specific characteristics (biomarkers) objectively measured in children with PAH to determine appropriate clinical management. This review highlights the current state of biomarkers in pediatric PAH and looks forward to potential biomarkers, and makes several recommendations for their use and interpretation.


Asunto(s)
Biomarcadores/metabolismo , Hipertensión Pulmonar/metabolismo , Factor Natriurético Atrial/metabolismo , Pruebas Respiratorias , Micropartículas Derivadas de Células/metabolismo , Niño , Citocinas/metabolismo , Ecocardiografía , Células Endoteliales , Humanos , Hipertensión Pulmonar/diagnóstico por imagen , Imagen por Resonancia Magnética , MicroARNs/metabolismo , Péptido Natriurético Encefálico/metabolismo , Fragmentos de Péptidos/metabolismo , Tomografía Computarizada por Rayos X , Remodelación Vascular
6.
J Mol Cell Cardiol ; 67: 112-25, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24374140

RESUMEN

Fibrosis, which is defined as excessive accumulation of fibrous connective tissue, contributes to the pathogenesis of numerous diseases involving diverse organ systems. Cardiac fibrosis predisposes individuals to myocardial ischemia, arrhythmias and sudden death, and is commonly associated with diastolic dysfunction. Histone deacetylase (HDAC) inhibitors block cardiac fibrosis in pre-clinical models of heart failure. However, which HDAC isoforms govern cardiac fibrosis, and the mechanisms by which they do so, remains unclear. Here, we show that selective inhibition of class I HDACs potently suppresses angiotensin II (Ang II)-mediated cardiac fibrosis by targeting two key effector cell populations, cardiac fibroblasts and bone marrow-derived fibrocytes. Class I HDAC inhibition blocks cardiac fibroblast cell cycle progression through derepression of the genes encoding the cyclin-dependent kinase (CDK) inhibitors, p15 and p57. In contrast, class I HDAC inhibitors block agonist-dependent differentiation of fibrocytes through a mechanism involving repression of ERK1/2 signaling. These findings define novel roles for class I HDACs in the control of pathological cardiac fibrosis. Furthermore, since fibrocytes have been implicated in the pathogenesis of a variety of human diseases, including heart, lung and kidney failure, our results suggest broad utility for isoform-selective HDAC inhibitors as anti-fibrotic agents that function, in part, by targeting these circulating mesenchymal cells.


Asunto(s)
Angiotensina II/metabolismo , Fibroblastos/efectos de los fármacos , Fibrosis/fisiopatología , Inhibidores de Histona Desacetilasas/farmacología , Animales , Ciclo Celular/efectos de los fármacos , Diferenciación Celular , Fibroblastos/metabolismo , Fibrosis/tratamiento farmacológico , Citometría de Flujo , Humanos , Immunoblotting , Masculino , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena de la Polimerasa , Isoformas de Proteínas/farmacología
7.
Circ Res ; 110(5): 739-48, 2012 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-22282194

RESUMEN

RATIONALE: Histone deacetylase (HDAC) inhibitors are efficacious in models of hypertension-induced left ventricular heart failure. The consequences of HDAC inhibition in the context of pulmonary hypertension with associated right ventricular cardiac remodeling are poorly understood. OBJECTIVE: This study was performed to assess the utility of selective small-molecule inhibitors of class I HDACs in a preclinical model of pulmonary hypertension. METHODS AND RESULTS: Rats were exposed to hypobaric hypoxia for 3 weeks in the absence or presence of a benzamide HDAC inhibitor, MGCD0103, which selectively inhibits class I HDACs 1, 2, and 3. The compound reduced pulmonary arterial pressure more dramatically than tadalafil, a standard-of-care therapy for human pulmonary hypertension that functions as a vasodilator. MGCD0103 improved pulmonary artery acceleration time and reduced systolic notching of the pulmonary artery flow envelope, which suggests a positive impact of the HDAC inhibitor on pulmonary vascular remodeling and stiffening. Similar results were obtained with an independent class I HDAC-selective inhibitor, MS-275. Reduced pulmonary arterial pressure in MGCD0103-treated animals was associated with blunted pulmonary arterial wall thickening because of suppression of smooth muscle cell proliferation. Right ventricular function was maintained in MGCD0103-treated animals. Although the class I HDAC inhibitor only modestly reduced right ventricular hypertrophy, it had multiple beneficial effects on the right ventricle, which included suppression of pathological gene expression, inhibition of proapoptotic caspase activity, and repression of proinflammatory protein expression. CONCLUSIONS: By targeting distinct pathogenic mechanisms, isoform-selective HDAC inhibitors have potential as novel therapeutics for pulmonary hypertension that will complement vasodilator standards of care.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Histona Desacetilasas/efectos de los fármacos , Hipertensión Pulmonar/prevención & control , Músculo Liso Vascular/citología , Remodelación Ventricular/efectos de los fármacos , Animales , Benzamidas/farmacología , Benzamidas/uso terapéutico , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/fisiología , Células Cultivadas , Modelos Animales de Enfermedad , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/fisiopatología , Hipertensión Pulmonar/etiología , Hipoxia/complicaciones , Músculo Liso Vascular/efectos de los fármacos , Piridinas/farmacología , Piridinas/uso terapéutico , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Ratas , Ratas Sprague-Dawley , Flujo Sanguíneo Regional/efectos de los fármacos , Flujo Sanguíneo Regional/fisiología
8.
Am J Respir Crit Care Med ; 188(9): 1126-36, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24093638

RESUMEN

RATIONALE: Autoimmunity has long been associated with pulmonary hypertension. Bronchus-associated lymphoid tissue plays important roles in antigen sampling and self-tolerance during infection and inflammation. OBJECTIVES: We reasoned that activated bronchus-associated lymphoid tissue would be evident in rats with pulmonary hypertension, and that loss of self-tolerance would result in production of pathologic autoantibodies that drive vascular remodeling. METHODS: We used animal models, histology, and gene expression assays to evaluate the role of bronchus-associated lymphoid tissue in pulmonary hypertension. MEASUREMENTS AND MAIN RESULTS: Bronchus-associated lymphoid tissue was more numerous, larger, and more active in pulmonary hypertension compared with control animals. We found dendritic cells in and around lymphoid tissue, which were composed of CD3(+) T cells over a core of CD45RA(+) B cells. Antirat IgG and plasma from rats with pulmonary hypertension decorated B cells in lymphoid tissue, resistance vessels, and adventitia of large vessels. Lymphoid tissue in diseased rats was vascularized by aquaporin-1(+) high endothelial venules and vascular cell adhesion molecule-positive vessels. Autoantibodies are produced in bronchus-associated lymphoid tissue and, when bound to pulmonary adventitial fibroblasts, change their phenotype to one that may promote inflammation. Passive transfer of autoantibodies into rats caused pulmonary vascular remodeling and pulmonary hypertension. Diminution of lymphoid tissue reversed pulmonary hypertension, whereas immunologic blockade of CCR7 worsened pulmonary hypertension and hastened its onset. CONCLUSIONS: Bronchus-associated lymphoid tissue expands in pulmonary hypertension and is autoimmunologically active. Loss of self-tolerance contributes to pulmonary vascular remodeling and pulmonary hypertension. Lymphoid tissue-directed therapies may be beneficial in treating pulmonary hypertension.


Asunto(s)
Autoanticuerpos/inmunología , Vasos Sanguíneos/inmunología , Hipertensión Pulmonar/inmunología , Inmunoglobulina G/inmunología , Pulmón/irrigación sanguínea , Tejido Linfoide/inmunología , Animales , Autoinmunidad , Bronquios , Células Dendríticas/inmunología , Modelos Animales de Enfermedad , Fibroblastos/inmunología , Perfilación de la Expresión Génica , Inflamación/inmunología , Mediadores de Inflamación , Pulmón/inmunología , Masculino , Ratas , Ratas Wistar
9.
Eur J Med Genet ; 68: 104922, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38325643

RESUMEN

OBJECTIVES: We tested the hypothesis that aberrant expression of Hsa21-encoded interferon genes in peripheral blood immune cells would correlate to immune cell dysfunction in children with Down syndrome (DS). STUDY DESIGN: We performed flow cytometry to quantify peripheral blood leukocyte subtypes and measured their ability to migrate and phagocytose. In matched samples, we measured gene expression levels for constituents of interferon signaling pathways. We screened 49 children, of which 29 were individuals with DS. RESULTS: We show that the percentages of two peripheral blood myeloid cell subtypes (alternatively-activated macrophages and low-density granulocytes) in children with DS differed significantly from typical children, children with DS circulate a very different pattern of cytokines vs. typical individuals, and higher expression levels of type III interferon receptor Interleukin-10Rb in individuals with DS correlated with reduced migratory and phagocytic capacity of macrophages. CONCLUSIONS: Increased susceptibility to severe and chronic infection in children with DS may result from inappropriate numbers and subtypes of immune cells that are phenotypically and functionally altered due to trisomy 21 associated interferonopathy.


Asunto(s)
Síndrome de Down , Infecciones del Sistema Respiratorio , Niño , Humanos , Síndrome de Down/genética , Leucocitos/metabolismo , Interferones/genética , Expresión Génica
10.
J Immunol ; 187(5): 2711-22, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21813768

RESUMEN

Persistent accumulation of monocytes/macrophages in the pulmonary artery adventitial/perivascular areas of animals and humans with pulmonary hypertension has been documented. The cellular mechanisms contributing to chronic inflammatory responses remain unclear. We hypothesized that perivascular inflammation is perpetuated by activated adventitial fibroblasts, which, through sustained production of proinflammatory cytokines/chemokines and adhesion molecules, induce accumulation, retention, and activation of monocytes/macrophages. We further hypothesized that this proinflammatory phenotype is the result of the abnormal activity of histone-modifying enzymes, specifically, class I histone deacetylases (HDACs). Pulmonary adventitial fibroblasts from chronically hypoxic hypertensive calves (termed PH-Fibs) expressed a constitutive and persistent proinflammatory phenotype defined by high expression of IL-1ß, IL-6, CCL2(MCP-1), CXCL12(SDF-1), CCL5(RANTES), CCR7, CXCR4, GM-CSF, CD40, CD40L, and VCAM-1. The proinflammatory phenotype of PH-Fibs was associated with epigenetic alterations as demonstrated by increased activity of HDACs and the findings that class I HDAC inhibitors markedly decreased cytokine/chemokine mRNA expression levels in these cells. PH-Fibs induced increased adhesion of THP-1 monocytes and produced soluble factors that induced increased migration of THP-1 and murine bone marrow-derived macrophages as well as activated monocytes/macrophages to express proinflammatory cytokines and profibrogenic mediators (TIMP1 and type I collagen) at the transcriptional level. Class I HDAC inhibitors markedly reduced the ability of PH-Fibs to induce monocyte migration and proinflammatory activation. The emergence of a distinct adventitial fibroblast population with an epigenetically altered proinflammatory phenotype capable of recruiting, retaining, and activating monocytes/macrophages characterizes pulmonary hypertension-associated vascular remodeling and thus could contribute significantly to chronic inflammatory processes in the pulmonary artery wall.


Asunto(s)
Epigénesis Genética , Fibroblastos/inmunología , Hipertensión Pulmonar/inmunología , Neumonía/inmunología , Animales , Animales Recién Nacidos , Western Blotting , Bovinos , Adhesión Celular , Movimiento Celular , Tejido Conectivo/inmunología , Citocinas/biosíntesis , Fibroblastos/metabolismo , Técnica del Anticuerpo Fluorescente , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Hipertensión Pulmonar/metabolismo , Hipoxia/inmunología , Hipoxia/metabolismo , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Monocitos/inmunología , Monocitos/metabolismo , Fenotipo , Neumonía/metabolismo , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
11.
FASEB Bioadv ; 5(12): 528-540, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38094158

RESUMEN

Objectives: We sought to investigate whether the Dp16 mouse model of Down syndrome (DS) is more susceptible to severe and lethal respiratory tract infection by Streptococcus pneumoniae. Study Design: We infected controls and Dp16 mice with Streptococcus pneumoniae and measured survival rates. We compared cytokine production by primary lung cell cultures exposed to Streptococcus pneumoniae. We examined lung protein expression for interferon signaling related pathways. We characterized the histopathology and quantified the extent of bronchus-associated lymphoid tissue. Finally, we examined mouse tissues for the presence of oligomeric tau protein. Results: We found that the Dp16 mouse model of DS displayed significantly higher susceptibility to lethal respiratory infection with Streptococcus pneumoniae compared to control mice. Lung cells cultured from Dp16 mice displayed unique secreted cytokine profiles compared to control mice. The Dp16 mouse lungs were characterized by profound lobar pneumonia with massive diffuse consolidation involving nearly the entire lobe. Marked red hepatization was noted, and Dp16 mice lungs contained numerous bronchus-associated lymphoid tissues that were highly follicularized. Compared to uninfected mice, both control mice and Dp16 mice infected with Streptococcus pneumoniae showed evidence of oligomeric tau aggregates. Conclusions: Increased susceptibility to severe respiratory tract infection with Streptococcus pneumoniae in Dp16 mice closely phenocopies infection in individuals with DS. The increase does not appear to be linked to overexpression of mouse interferon genes syntenic to human chromosome 21.

12.
Genes (Basel) ; 14(9)2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37761959

RESUMEN

(1) Background: We sought to investigate the baseline lung and heart biology of the Dp16 mouse model of Down syndrome (DS) as a prelude to the investigation of recurrent respiratory tract infection. (2) Methods: In controls vs. Dp16 mice, we compared peripheral blood cell and plasma analytes. We examined baseline gene expression in lungs and hearts for key parameters related to susceptibility of lung infection. We investigated lung and heart protein expression and performed lung morphometry. Finally, and for the first time each in a model of DS, we performed pulmonary function testing and a hemodynamic assessment of cardiac function. (3) Results: Dp16 mice circulate unique blood plasma cytokines and chemokines. Dp16 mouse lungs over-express the mRNA of triplicated genes, but not necessarily corresponding proteins. We found a sex-specific decrease in the protein expression of interferon α receptors, yet an increased signal transducer and activator of transcription (STAT)-3 and phospho-STAT3. Platelet-activating factor receptor protein was not elevated in Dp16 mice. The lungs of Dp16 mice showed increased stiffness and mean linear intercept and contained bronchus-associated lymphoid tissue. The heart ventricles of Dp16 mice displayed hypotonicity. Finally, Dp16 mice required more ketamine to achieve an anesthetized state. (4) Conclusions: The Dp16 mouse model of DS displays key aspects of lung heart biology akin to people with DS. As such, it has the potential to be an extremely valuable model of recurrent severe respiratory tract infection in DS.


Asunto(s)
Síndrome de Down , Infecciones del Sistema Respiratorio , Humanos , Masculino , Femenino , Ratones , Animales , Síndrome de Down/metabolismo , Modelos Animales de Enfermedad , Pulmón/metabolismo , Biología
13.
Am J Respir Cell Mol Biol ; 46(1): 14-22, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21778413

RESUMEN

Endothelin-1 is a potent vasoactive peptide that occurs in chronically high levels in humans with pulmonary hypertension and in animal models of the disease. Recently, the unfolded protein response was implicated in a variety of diseases, including pulmonary hypertension. In addition, evidence is increasing for pathological, persistent inflammation in the pathobiology of this disease. We investigated whether endothelin-1 might engage the unfolded protein response and thus link inflammation and the production of hyaluronic acid by pulmonary artery smooth muscle cells. Using immunoblot, real-time PCR, immunofluorescence, and luciferase assays, we found that endothelin-1 induces both a transcriptional and posttranslational activation of the three major arms of the unfolded protein response. The pharmacologic blockade of endothelin A receptors, but not endothelin B receptors, attenuated the observed release, as did a pharmacologic blockade of extracellular signal-regulated kinases 1 and 2 (ERK-1/2) signaling. Using short hairpin RNA and ELISA, we observed that the release by pulmonary artery smooth muscle cells of inflammatory modulators, including hyaluronic acid, is associated with endothelin-1-induced ERK-1/2 phosphorylation and the unfolded protein response. Furthermore, the synthesis of hyaluronic acid induced by endothelin-1 is permissive for persistent THP-1 monocyte binding. These results suggest that endothelin-1, in part because it induces the unfolded protein response in pulmonary artery smooth muscle cells, triggers proinflammatory processes that likely contribute to vascular remodeling in pulmonary hypertension.


Asunto(s)
Arteritis/metabolismo , Endotelina-1/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Arteria Pulmonar/metabolismo , Respuesta de Proteína Desplegada/fisiología , Factor de Transcripción Activador 6/metabolismo , Animales , Arteritis/patología , Citocinas/metabolismo , Proteínas de Unión al ADN/metabolismo , Antagonistas de los Receptores de la Endotelina A , Endotelina-1/genética , Ácido Hialurónico/metabolismo , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Monocitos/metabolismo , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Fosforilación/genética , Fosforilación/fisiología , Ratas , Receptor de Endotelina A/metabolismo , Receptor de Endotelina B/metabolismo , Factores de Transcripción del Factor Regulador X , Transducción de Señal/genética , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo , Respuesta de Proteína Desplegada/genética
15.
Cell Rep ; 29(7): 1893-1908.e4, 2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31722205

RESUMEN

People with Down syndrome (DS; trisomy 21) display a different disease spectrum relative to the general population, including lower rates of solid malignancies and higher incidence of neurological and autoimmune conditions. However, the mechanisms driving this unique clinical profile await elucidation. We completed a deep mapping of the immune system in adults with DS using mass cytometry to evaluate 100 immune cell types, which revealed global immune dysregulation consistent with chronic inflammation, including key changes in the myeloid and lymphoid cell compartments. Furthermore, measurement of interferon-inducible phosphorylation events revealed widespread hypersensitivity to interferon-α in DS, with cell-type-specific variations in downstream intracellular signaling. Mechanistically, this could be explained by overexpression of the interferon receptors encoded on chromosome 21, as demonstrated by increased IFNAR1 surface expression in all immune lineages tested. These results point to interferon-driven immune dysregulation as a likely contributor to the developmental and clinical hallmarks of DS.


Asunto(s)
Síndrome de Down/inmunología , Interferón-alfa/inmunología , Adulto , Síndrome de Down/patología , Femenino , Citometría de Flujo , Humanos , Masculino , Persona de Mediana Edad
16.
N Engl J Med ; 349(12): 1113-22, 2003 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-13679525

RESUMEN

BACKGROUND: Severe pulmonary hypertension constitutes a group of diseases characterized by complex, lumen-occluding vascular lesions that develop in genetically susceptible persons. The only viral infection associated with severe pulmonary hypertension has been that due to human immunodeficiency virus type 1, but neither the viral genome nor viral antigens have been demonstrated in pathologic lesions. METHODS: We examined lung-tissue samples from 16 patients with sporadic primary pulmonary hypertension and 14 patients with secondary pulmonary hypertension for evidence of infection with human herpesvirus 8 (HHV-8). HHV-8 infection was ascertained immunohistochemically with use of an antibody directed against latency-associated nuclear antigen 1 (LANA-1), and a polymerase-chain-reaction (PCR) assay was performed on lung DNA to detect the viral cyclin gene of HHV-8. Sequence analysis was also performed. RESULTS: In lung tissue from 10 of 16 patients with primary pulmonary hypertension (62 percent), cells within the plexiform lesions as well as cells outside the lesions were positive for LANA-1 on immunohistochemical analysis. Tissue from the same 10 patients contained viral cyclin on PCR analysis. No LANA-1 was detected in lung tissue from patients with secondary pulmonary hypertension, although one such patient had PCR evidence of viral cyclin. Plexiform lesions from patients with primary pulmonary hypertension had a histologic and immunohistochemical resemblance to cutaneous Kaposi's sarcoma lesions. CONCLUSIONS: The spectrum of trigger factors and molecular mechanisms leading to severe pulmonary hypertension and the formation of plexiform lesions is apparently wide, including both genetic and epigenetic factors. Our data suggest that infection with the vasculotropic virus HHV-8 may have a pathogenetic role in primary pulmonary hypertension.


Asunto(s)
Infecciones por Herpesviridae/complicaciones , Herpesvirus Humano 8/aislamiento & purificación , Hipertensión Pulmonar/virología , Pulmón/virología , Receptores de Proteínas Morfogenéticas Óseas de Tipo II , Ciclinas/análisis , ADN Viral/análisis , Femenino , Genes Virales , Infecciones por Herpesviridae/diagnóstico , Herpesvirus Humano 8/genética , Humanos , Hipertensión Pulmonar/etiología , Masculino , Mutación , Proteínas Serina-Treonina Quinasas/genética , Análisis de Secuencia de ADN , Proteínas Virales
17.
Eur Respir Rev ; 26(143)2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28223397

RESUMEN

Down syndrome is the most common chromosomal abnormality among live-born infants. Through full or partial trisomy of chromosome 21, Down syndrome is associated with cognitive impairment, congenital malformations (particularly cardiovascular) and dysmorphic features. Immune disturbances in Down syndrome account for an enormous disease burden ranging from quality-of-life issues (autoimmune alopecia) to more serious health issues (autoimmune thyroiditis) and life-threatening issues (leukaemia, respiratory tract infections and pulmonary hypertension). Cardiovascular and pulmonary diseases account for ∼75% of the mortality seen in persons with Down syndrome. This review summarises the cardiovascular, respiratory and immune challenges faced by individuals with Down syndrome, and the genetic underpinnings of their pathobiology. We strongly advocate increased comparative studies of cardiopulmonary disease in persons with and without Down syndrome, as we believe these will lead to new strategies to prevent and treat diseases affecting millions of people worldwide.


Asunto(s)
Enfermedades Cardiovasculares , Síndrome de Down , Enfermedades Pulmonares , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/inmunología , Enfermedades Cardiovasculares/mortalidad , Enfermedades Cardiovasculares/fisiopatología , Sistema Cardiovascular/inmunología , Sistema Cardiovascular/fisiopatología , Causas de Muerte , Síndrome de Down/genética , Síndrome de Down/inmunología , Síndrome de Down/mortalidad , Síndrome de Down/fisiopatología , Predisposición Genética a la Enfermedad , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/inmunología , Cardiopatías Congénitas/mortalidad , Cardiopatías Congénitas/fisiopatología , Humanos , Pulmón/inmunología , Pulmón/fisiopatología , Enfermedades Pulmonares/genética , Enfermedades Pulmonares/inmunología , Enfermedades Pulmonares/mortalidad , Enfermedades Pulmonares/fisiopatología , Fenotipo , Pronóstico , Factores de Riesgo
18.
J Am Heart Assoc ; 6(12)2017 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-29263034

RESUMEN

BACKGROUND: Qualitative and quantitative flow hemodynamic indexes have been shown to reflect right ventricular (RV) afterload and function in pulmonary hypertension (PH). We aimed to quantify flow hemodynamic formations in pulmonary arteries using 4-dimensional flow cardiac magnetic resonance imaging and the spatial velocity derivatives helicity and vorticity in a heterogeneous PH population. METHODS AND RESULTS: Patients with PH (n=35) and controls (n=10) underwent 4-dimensional flow magnetic resonance imaging study for computation of helicity and vorticity in the main pulmonary artery (MPA), the right pulmonary artery, and the RV outflow tract. Helicity and vorticity were correlated with standard RV volumetric and functional indexes along with MPA stiffness assessed by measuring relative area change. Patients with PH had a significantly decreased helicity in the MPA (8 versus 32 m/s2; P<0.001), the right pulmonary artery (24 versus 50 m/s2; P<0.001), and the RV outflow tract-MPA unit (15 versus 42 m/s2; P<0.001). Vorticity was significantly decreased in patients with PH only in the right pulmonary artery (26 versus 45 1/s; P<0.001). Total helicity computed correlated with the cardiac magnetic resonance imaging-derived ventricular-vascular coupling (-0.927; P<0.000), the RV ejection fraction (0.865; P<0.0001), cardiac output (0.581; P<0.0001), mean pulmonary arterial pressure (-0.581; P=0.0008), and relative area change measured at the MPA (0.789; P<0.0001). CONCLUSIONS: The flow hemodynamic character in patients with PH assessed via quantitative analysis is considerably different when compared with healthy and normotensive controls. A strong association between helicity in pulmonary arteries and ventricular-vascular coupling suggests a relationship between the mechanical and flow hemodynamic domains.


Asunto(s)
Velocidad del Flujo Sanguíneo/fisiología , Ventrículos Cardíacos/fisiopatología , Hipertensión Pulmonar/fisiopatología , Angiografía por Resonancia Magnética/métodos , Arteria Pulmonar/fisiopatología , Presión Esfenoidal Pulmonar/fisiología , Función Ventricular Derecha/fisiología , Cateterismo Cardíaco , Femenino , Estudios de Seguimiento , Ventrículos Cardíacos/diagnóstico por imagen , Humanos , Hipertensión Pulmonar/diagnóstico , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Cinemagnética/métodos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Arteria Pulmonar/diagnóstico por imagen , Volumen Sistólico
19.
Thromb Haemost ; 94(1): 175-83, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16113801

RESUMEN

Lung development is a highly orchestrated process characterized by timed expression and activation of growth factor and protease/antiprotease systems. This interplay is essential in regulating vasculogenesis, alveolarization, and epithelial to mesenchymal transition during lung development. Alterations in the proteolytic/antiproteolytic balance of the lung have been associated with several respiratory diseases characterized by changes in the lung extracellular matrix (ECM). Here, we characterized the expression pattern of matrix metalloproteases (MMP) and their inhibitors, the tissue inhibitors of metalloproteases (TIMP), in human and mouse lung development. Using MMP/TIMP expression arrays, RT-PCR, Western Blotting, and ELISA analyses, we demonstrate that fetal human lung is characterized by a dominant proteolytic profile with high MMP-2 and little TIMP-3 expression. Adult human lung, in contrast, exhibits a more anti-proteolytic profile with decreased MMP-2 and increased TIMP-3 expression. MMP-14, MMP-20, TIMP-1, and TIMP-2 were constitutively expressed, irrespective of the developmental stage. Similar results were obtained using mouse lungs of different developmental stages, with the addition that in mouse lung, TIMP-2 and TIMP-3 were upregulated as lung development progressed. Exposure of neonatal mice to chronic hypoxia (10% O2), a stimulus that leads to an arrest of lung development, resulted in upregulation of MMP-2 with a concomitant downregulation of TIMP-2. These results provide a comprehensive analysis of MMP and TIMP expression during human and mouse lung development. MMP-2, TIMP-2, and TIMP-3 may be key regulatory enzymes during lung development, possibly through their complex action on ECM components, membrane receptor ectodomain shedding, and growth factor bioactivity.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Pulmón/embriología , Pulmón/enzimología , Inhibidores de la Metaloproteinasa de la Matriz , Metaloproteinasas de la Matriz/biosíntesis , Animales , Western Blotting , Densitometría , Regulación hacia Abajo , Ensayo de Inmunoadsorción Enzimática , Epitelio/metabolismo , Matriz Extracelular/metabolismo , Humanos , Hipoxia , Técnicas para Inmunoenzimas , Pulmón/metabolismo , Metaloproteinasa 2 de la Matriz/biosíntesis , Mesodermo/metabolismo , Ratones , Estructura Terciaria de Proteína , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Especificidad de la Especie , Inhibidor Tisular de Metaloproteinasa-1/biosíntesis , Inhibidores Tisulares de Metaloproteinasas/metabolismo , Regulación hacia Arriba
20.
Proteomics Clin Appl ; 9(1-2): 111-20, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25408474

RESUMEN

Pulmonary hypertension (PH) is a fatal syndrome that arises from a multifactorial and complex background, is characterized by increased pulmonary vascular resistance and right heart afterload, and often leads to cor pulmonale. Over the past decades, remarkable progress has been made in reducing patient symptoms and delaying the progression of the disease. Unfortunately, PH remains a disease with no cure. The substantial heterogeneity of PH continues to be a major limitation to the development of newer and more efficacious therapies. New advances in our understanding of the biological pathways leading to such a complex pathogenesis will require the identification of the important proteins and protein networks that differ between a healthy lung (or right ventricle) and a remodeled lung in an individual with PH. In this article, we present the case for the increased use of proteomics--the study of proteins and protein networks--as a discovery tool for key proteins and protein networks operational in the PH lung. We review recent applications of proteomics in PH, and summarize the biological pathways identified. Finally, we attempt to presage what the future will bring with regard to proteomics in PH and offer our perspectives on the prospects of developing personalized proteomics and custom-tailored therapies.


Asunto(s)
Biomarcadores/metabolismo , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/terapia , Medicina de Precisión , Proteoma/análisis , Proteómica/métodos , Humanos , Hipertensión Pulmonar/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA