RESUMEN
Insight into the nucleation, growth and phase transformations of calcium sulphate could improve the performance of construction materials, reduce scaling in industrial processes and aid understanding of its formation in the natural environment. Recent studies have suggested that the calcium sulphate pseudo polymorph, gypsum (CaSO4 ·2H2 O) can form in aqueous solution via a bassanite (CaSO4 ·0.5H2 O) intermediate. Some in situ experimental work has also suggested that the transformation of bassanite to gypsum can occur through an oriented assembly mechanism. In this work, we have exploited liquid cell transmission electron microscopy (LCTEM) to study the transformation of bassanite to gypsum in an undersaturated aqueous solution of calcium sulphate. This was benchmarked against cryogenic TEM (cryo-TEM) studies to validate internally the data obtained from the two microscopy techniques. When coupled with Raman spectroscopy, the real-time data generated by LCTEM, and structural data obtained from cryo-TEM show that bassanite can transform to gypsum via more than one pathway, the predominant one being dissolution/reprecipitation. Comparisons between LCTEM and cryo-TEM also show that the transformation is slower within the confined region of the liquid cell as compared to a bulk solution. This work highlights the important role of a correlated microscopy approach for the study of dynamic processes such as crystallisation from solution if we are to extract true mechanistic understanding.
Asunto(s)
Sulfato de Calcio , Sulfato de Calcio/química , Microscopía Electrónica de Transmisión , CristalizaciónRESUMEN
Silica (SiO2) is one of the most common materials on Earth. The crystalline form α-quartz is the stable silica polymorph at ambient conditions although metastable forms exist. α-quartz is a piezoelectric material, it can be produced artificially and is widely used for example in electronics and the biosciences. Despite the many application areas, the atomic surface structures of silica polymorphs are neither well understood nor well characterized. Here we present measurements of α-quartz (0001). Helium Atom Scattering combined with Atomic Force Microscopy reveals a giant reconstruction consisting of 5.55 ± 0.07 nm wide ribbons, oriented 10.4° ± 0.8° relative to the bulk unit cell. The ribbons, with the aid of atomistic modelling, can be explained as a self-organised pattern of nano Dauphine twins (nano electrical twins).
RESUMEN
A combination of experimental and computational techniques has been employed to study doping effects in perovskite CaMnO3. High quality Sr-Mo co-substituted CaMnO3 ceramics were prepared by the conventional mixed oxide route. Crystallographic data from X-ray and electron diffraction showed an orthorhombic to tetragonal symmetry change on increasing the Sr content, suggesting that Sr widens the transition temperature in CaMnO3 preventing phase transformation-cracking on cooling after sintering, enabling the fabrication of high density ceramics. Atomically resolved imaging and analysis showed a random distribution of Sr in the A-site of the perovskite structure and revealed a boundary structure of 90° rotational twin boundaries across {101}orthorhombic; the latter are predominant phonon scattering sources to lower the thermal conductivity as suggested by molecular dynamics calculations. The effect of doping on the thermoelectric properties was evaluated. Increasing Sr substitution reduces the Seebeck coefficient but the power factor remains high due to improved densification by Sr substitution. Mo doping generates additional charge carriers due to the presence of Mn3+ in the Mn4+ matrix, reducing electrical resistivity. The major impact of Sr on thermoelectric behaviour is the reduction of the thermal conductivity as shown experimentally and by modelling. Strontium containing ceramics showed thermoelectric figure of merit (ZT) values higher than 0.1 at temperatures above 850 K. Ca0.7Sr0.3Mn0.96Mo0.04O3 ceramics exhibit enhanced properties with S1000K = -180 µV K-1, ρ1000K = 5 × 10-5 Ωm, k1000K = 1.8 W m-1 K-1 and ZT ≈ 0.11 at 1000 K.