Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 613(7944): 550-557, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36599986

RESUMEN

Animals display substantial inter-species variation in the rate of embryonic development despite a broad conservation of the overall sequence of developmental events. Differences in biochemical reaction rates, including the rates of protein production and degradation, are thought to be responsible for species-specific rates of development1-3. However, the cause of differential biochemical reaction rates between species remains unknown. Here, using pluripotent stem cells, we have established an in vitro system that recapitulates the twofold difference in developmental rate between mouse and human embryos. This system provides a quantitative measure of developmental speed as revealed by the period of the segmentation clock, a molecular oscillator associated with the rhythmic production of vertebral precursors. Using this system, we show that mass-specific metabolic rates scale with the developmental rate and are therefore higher in mouse cells than in human cells. Reducing these metabolic rates by inhibiting the electron transport chain slowed down the segmentation clock by impairing the cellular NAD+/NADH redox balance and, further downstream, lowering the global rate of protein synthesis. Conversely, increasing the NAD+/NADH ratio in human cells by overexpression of the Lactobacillus brevis NADH oxidase LbNOX increased the translation rate and accelerated the segmentation clock. These findings represent a starting point for the manipulation of developmental rate, with multiple translational applications including accelerating the differentiation of human pluripotent stem cells for disease modelling and cell-based therapies.


Asunto(s)
Embrión de Mamíferos , Desarrollo Embrionario , Animales , Humanos , Ratones , Diferenciación Celular , Desarrollo Embrionario/fisiología , NAD/metabolismo , Oxidación-Reducción , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Especificidad de la Especie , Técnicas In Vitro , Transporte de Electrón , Relojes Biológicos , Factores de Tiempo , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Levilactobacillus brevis
2.
Nature ; 583(7814): 122-126, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32461692

RESUMEN

The cellular NADH/NAD+ ratio is fundamental to biochemistry, but the extent to which it reflects versus drives metabolic physiology in vivo is poorly understood. Here we report the in vivo application of Lactobacillus brevis (Lb)NOX1, a bacterial water-forming NADH oxidase, to assess the metabolic consequences of directly lowering the hepatic cytosolic NADH/NAD+ ratio in mice. By combining this genetic tool with metabolomics, we identify circulating α-hydroxybutyrate levels as a robust marker of an elevated hepatic cytosolic NADH/NAD+ ratio, also known as reductive stress. In humans, elevations in circulating α-hydroxybutyrate levels have previously been associated with impaired glucose tolerance2, insulin resistance3 and mitochondrial disease4, and are associated with a common genetic variant in GCKR5, which has previously been associated with many seemingly disparate metabolic traits. Using LbNOX, we demonstrate that NADH reductive stress mediates the effects of GCKR variation on many metabolic traits, including circulating triglyceride levels, glucose tolerance and FGF21 levels. Our work identifies an elevated hepatic NADH/NAD+ ratio as a latent metabolic parameter that is shaped by human genetic variation and contributes causally to key metabolic traits and diseases. Moreover, it underscores the utility of genetic tools such as LbNOX to empower studies of 'causal metabolism'.


Asunto(s)
Hígado/metabolismo , NAD/metabolismo , Estrés Fisiológico , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Citosol/metabolismo , Modelos Animales de Enfermedad , Factores de Crecimiento de Fibroblastos/sangre , Variación Genética , Prueba de Tolerancia a la Glucosa , Humanos , Resistencia a la Insulina , Levilactobacillus brevis/enzimología , Levilactobacillus brevis/genética , Masculino , Ratones , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , NADH NADPH Oxidorreductasas/genética , NADH NADPH Oxidorreductasas/metabolismo , Oxidación-Reducción , Triglicéridos/sangre
4.
J Neurochem ; 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37929637

RESUMEN

The metabolic demands of neuronal activity are both temporally and spatially dynamic, and neurons are particularly sensitive to disruptions in fuel and oxygen supply. Glucose is considered an obligate fuel for supporting brain metabolism. Although alternative fuels are often available, the extent of their contribution to central carbon metabolism remains debated. Differential fuel metabolism likely depends on cell type, location, and activity state, complicating its study. While biosensors provide excellent spatial and temporal information, they are limited to observations of only a few metabolites. On the other hand, mass spectrometry is rich in chemical information, but traditionally relies on cell culture or homogenized tissue samples. Here, we use mass spectrometry imaging (MALDI-MSI) to focus on the fuel metabolism of the dentate granule cell (DGC) layer in murine hippocampal slices. Using stable isotopes, we explore labeling dynamics at baseline, as well as in response to brief stimulation or fuel competition. We find that at rest, glucose is the predominant fuel metabolized through glycolysis, with little to no measurable contribution from glycerol or fructose. However, lactate/pyruvate, ß-hydroxybutyrate (ßHB), octanoate, and glutamine can contribute to TCA metabolism to varying degrees. In response to brief depolarization with 50 mM KCl, glucose metabolism was preferentially increased relative to the metabolism of alternative fuels. With an increased supply of alternative fuels, both lactate/pyruvate and ßHB can outcompete glucose for TCA cycle entry. While lactate/pyruvate modestly reduced glucose contribution to glycolysis, ßHB caused little change in glycolysis. This approach achieves broad metabolite coverage from a spatially defined region of physiological tissue, in which metabolic states are rapidly preserved following experimental manipulation. Using this powerful methodology, we investigated metabolism within the dentate gyrus not only at rest, but also in response to the energetic demand of activation, and in states of fuel competition.

5.
J Neurosci Res ; 97(8): 883-889, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30575090

RESUMEN

Brain metabolism increases during stimulation, but this increase does not affect all energy metabolism equally. Briefly after stimulation, there is a local increase in cerebral blood flow and in glucose uptake, but a smaller increase in oxygen uptake. This indicates that temporarily the rate of glycolysis is faster than the rate of oxidative metabolism, with a corresponding temporary increase in lactate production. This minireview discusses the long-standing controversy about which cell type, neurons or astrocytes, are involved in this increased aerobic glycolysis. Recent biosensor studies measuring metabolic changes in neurons, in acute brain slices or in vivo, are placed in the context of other data bearing on this question. The most direct measurements indicate that, although both neurons and astrocytes may increase glycolysis after stimulation, neurons do not rely on import of astrocytic-produced lactate, and instead they increase their own glycolytic rate and become net exporters of lactate. This temporary increase in neuronal glycolysis may provide rapid energy to meet the acute energy demands of neurons.


Asunto(s)
Astrocitos/metabolismo , Encéfalo/metabolismo , Glucosa/metabolismo , Ácido Láctico/metabolismo , Neuronas/metabolismo , Animales , Metabolismo Energético , Glucólisis , Humanos
6.
J Neurosci Res ; 97(8): 946-960, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31106909

RESUMEN

Glucose is an essential source of energy for the brain. Recently, the development of genetically encoded fluorescent biosensors has allowed real time visualization of glucose dynamics from individual neurons and astrocytes. A major difficulty for this approach, even for ratiometric sensors, is the lack of a practical method to convert such measurements into actual concentrations in ex vivo brain tissue or in vivo. Fluorescence lifetime imaging provides a strategy to overcome this. In a previous study, we reported the lifetime glucose sensor iGlucoSnFR-TS (then called SweetieTS) for monitoring changes in neuronal glucose levels in response to stimulation. This genetically encoded sensor was generated by combining the Thermus thermophilus glucose-binding protein with a circularly permuted variant of the monomeric fluorescent protein T-Sapphire. Here, we provide more details on iGlucoSnFR-TS design and characterization, as well as pH and temperature sensitivities. For accurate estimation of glucose concentrations, the sensor must be calibrated at the same temperature as the experiments. We find that when the extracellular glucose concentration is in the range 2-10 mM, the intracellular glucose concentration in hippocampal neurons from acute brain slices is ~20% of the nominal external glucose concentration (~0.4-2 mM). We also measured the cytosolic neuronal glucose concentration in vivo, finding a range of ~0.7-2.5 mM in cortical neurons from awake mice.


Asunto(s)
Técnicas Biosensibles/métodos , Glucosa/metabolismo , Hipocampo/metabolismo , Neuronas/metabolismo , Espectrometría de Fluorescencia/métodos , Animales , Técnicas Biosensibles/instrumentación , Femenino , Vectores Genéticos , Células HEK293 , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones Endogámicos C57BL , Thermus thermophilus/genética
7.
Am J Physiol Gastrointest Liver Physiol ; 314(1): G97-G108, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29025729

RESUMEN

Fatty liver disease (FLD), the most common chronic liver disease in the United States, may be caused by alcohol or the metabolic syndrome. Alcohol is oxidized in the cytosol of hepatocytes by alcohol dehydrogenase (ADH), which generates NADH and increases cytosolic NADH/NAD+ ratio. The increased ratio may be important for development of FLD, but our ability to examine this question is hindered by methodological limitations. To address this, we used the genetically encoded fluorescent sensor Peredox to obtain dynamic, real-time measurements of cytosolic NADH/NAD+ ratio in living hepatocytes. Peredox was expressed in dissociated rat hepatocytes and HepG2 cells by transfection, and in mouse liver slices by tail-vein injection of adeno-associated virus (AAV)-encoded sensor. Under control conditions, hepatocytes and liver slices exhibit a relatively low (oxidized) cytosolic NADH/NAD+ ratio as reported by Peredox. The ratio responds rapidly and reversibly to substrates of lactate dehydrogenase (LDH) and sorbitol dehydrogenase (SDH). Ethanol causes a robust dose-dependent increase in cytosolic NADH/NAD+ ratio, and this increase is mitigated by the presence of NAD+-generating substrates of LDH or SDH. In contrast to hepatocytes and slices, HepG2 cells exhibit a relatively high (reduced) ratio and show minimal responses to substrates of ADH and SDH. In slices, we show that comparable results are obtained with epifluorescence imaging and two-photon fluorescence lifetime imaging (2p-FLIM). Live cell imaging with Peredox is a promising new approach to investigate cytosolic NADH/NAD+ ratio in hepatocytes. Imaging in liver slices is particularly attractive because it allows preservation of liver microanatomy and metabolic zonation of hepatocytes. NEW & NOTEWORTHY We describe and validate a new approach for measuring free cytosolic NADH/NAD+ ratio in hepatocytes and liver slices: live cell imaging with the fluorescent biosensor Peredox. This approach yields dynamic, real-time measurements of the ratio in living, functioning liver cells, overcoming many limitations of previous methods for measuring this important redox parameter. The feasibility of using Peredox in liver slices is particularly attractive because slices allow preservation of hepatic microanatomy and metabolic zonation of hepatocytes.


Asunto(s)
Técnicas Biosensibles , Citosol/metabolismo , Metabolismo Energético , Hepatocitos/metabolismo , Hígado/metabolismo , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , NAD/metabolismo , Animales , Biomarcadores/metabolismo , Femenino , Genes Reporteros , Células Hep G2 , Humanos , Técnicas In Vitro , Proteínas Luminiscentes/biosíntesis , Proteínas Luminiscentes/genética , Masculino , Ratones Endogámicos C57BL , Oxidación-Reducción , Ratas Endogámicas Lew , Reproducibilidad de los Resultados , Factores de Tiempo , Transfección
8.
Epilepsia ; 59(1): e1-e4, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29171006

RESUMEN

Metabolic alteration, either through the ketogenic diet (KD) or by genetic alteration of the BAD protein, can produce seizure protection in acute chemoconvulsant models of epilepsy. To assess the seizure-protective role of knocking out (KO) the Bad gene in a chronic epilepsy model, we used the Kcna1-/- model of epilepsy, which displays progressively increased seizure severity and recapitulates the early death seen in sudden unexplained death in epilepsy (SUDEP). Beginning on postnatal day 24 (P24), we continuously video monitored Kcna1-/- and Kcna1-/- Bad-/- double knockout mice to assess survival and seizure severity. We found that Kcna1-/- Bad-/- mice outlived Kcna1-/- mice by approximately 2 weeks. Kcna1-/- Bad-/- mice also spent significantly less time in seizure than Kcna1-/- mice on P24 and the day of death, showing that BadKO provides seizure resistance in a genetic model of chronic epilepsy.


Asunto(s)
Síndrome de Brugada/etiología , Síndrome de Brugada/genética , Epilepsia , Canal de Potasio Kv.1.1/genética , Proteína Letal Asociada a bcl/deficiencia , Factores de Edad , Animales , Síndrome de Brugada/metabolismo , Modelos Animales de Enfermedad , Electroencefalografía , Epilepsia/complicaciones , Epilepsia/genética , Epilepsia/prevención & control , Femenino , Canal de Potasio Kv.1.1/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Letal Asociada a bcl/genética
9.
J Neurosci ; 34(49): 16336-47, 2014 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-25471572

RESUMEN

Neurons use glucose to fuel glycolysis and provide substrates for mitochondrial respiration, but neurons can also use alternative fuels that bypass glycolysis and feed directly into mitochondria. To determine whether neuronal pacemaking depends on active glucose metabolism, we switched the metabolic fuel from glucose to alternative fuels, lactate or ß-hydroxybutyrate, while monitoring the spontaneous firing of GABAergic neurons in mouse substantia nigra pars reticulata (SNr) brain slices. We found that alternative fuels, in the absence of glucose, sustained SNr spontaneous firing at basal rates, but glycolysis may still be supported by glycogen in the absence of glucose. To prevent any glycogen-fueled glycolysis, we directly inhibited glycolysis using either 2-deoxyglucose or iodoacetic acid. Inhibiting glycolysis in the presence of alternative fuels lowered SNr firing to a slower sustained firing rate. Surprisingly, we found that the decrease in SNr firing was not mediated by ATP-sensitive potassium (KATP) channel activity, but if we lowered the perfusion flow rate or omitted the alternative fuel, KATP channels were activated and could silence SNr firing. The KATP-independent slowing of SNr firing that occurred with glycolytic inhibition in the presence of alternative fuels was consistent with a decrease in a nonselective cationic conductance. Although mitochondrial metabolism alone can prevent severe energy deprivation and KATP channel activation in SNr neurons, active glucose metabolism appears important for keeping open a class of ion channels that is crucial for the high spontaneous firing rate of SNr neurons.


Asunto(s)
Potenciales de Acción/fisiología , Neuronas GABAérgicas/fisiología , Canales KATP/fisiología , Neuronas/metabolismo , Porción Reticular de la Sustancia Negra/citología , Porción Reticular de la Sustancia Negra/fisiología , Canales de Potencial de Receptor Transitorio/fisiología , Ácido 3-Hidroxibutírico/metabolismo , Animales , Desoxiglucosa/farmacología , Femenino , Glucólisis/efectos de los fármacos , Glucólisis/fisiología , Ácido Yodoacético/farmacología , Ácido Láctico/metabolismo , Masculino , Ratones
10.
Am J Physiol Cell Physiol ; 308(3): C264-76, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25472961

RESUMEN

Neutrophils are phagocytic cells that play a critical role in innate immunity by destroying bacterial pathogens. Channels belonging to the inward rectifier potassium channel subfamily 2 (Kir2 channels) have been described in other phagocytes (monocytes/macrophages and eosinophils) and in hematopoietic precursors of phagocytes. Their physiological function in these cells remains unclear, but some evidence suggests a role in growth factor-dependent proliferation and development. Expression of functional Kir2 channels has not been definitively demonstrated in mammalian neutrophils. Here, we show by RT-PCR that neutrophils from mouse bone marrow and liver express mRNA for the Kir2 subunit Kir2.1 but not for other subunits (Kir2.2, Kir2.3, and Kir2.4). In electrophysiological experiments, resting (unstimulated) neutrophils from mouse bone marrow and liver exhibit a constitutively active, external K(+)-dependent, strong inwardly rectifying current that constitutes the dominant current. The reversal potential is dependent on the external K(+) concentration in a Nernstian fashion, as expected for a K(+)-selective current. The current is not altered by changes in external or internal pH, and it is blocked by Ba(2+), Cs(+), and the Kir2-selective inhibitor ML133. The single-channel conductance is in agreement with previously reported values for Kir2.1 channels. These properties are characteristic of homomeric Kir2.1 channels. Current density in short-term cultures of bone marrow neutrophils is decreased in the absence of growth factors that are important for neutrophil proliferation [granulocyte colony-stimulating factor (G-CSF) and stem cell factor (SCF)]. These results demonstrate that mouse neutrophils express functional Kir2.1 channels and suggest that these channels may be important for neutrophil function, possibly in a growth factor-dependent manner.


Asunto(s)
Médula Ósea/metabolismo , Hígado/metabolismo , Neutrófilos/metabolismo , Canales de Potasio de Rectificación Interna/biosíntesis , Animales , Células Cultivadas , Femenino , Regulación de la Expresión Génica , Hígado/citología , Masculino , Ratones , Ratones Endogámicos C57BL
11.
Res Sq ; 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37546759

RESUMEN

Neuronal activity creates an intense energy demand that must be met by rapid metabolic responses. To investigate metabolic adaptations in the neuron-enriched dentate granule cell (DGC) layer within its native tissue environment, we employed murine acute hippocampal brain slices coupled with fast metabolite preservation, followed by mass spectrometry imaging (MALDI-MSI) to generate spatially resolved metabolomics and isotope tracing data. Here we show that membrane depolarization induces broad metabolic changes, including increased glycolytic activity in DGCs. Increased glucose metabolism in response to stimulation is accompanied by mobilization of endogenous inosine into pentose phosphates, via the action of purine nucleotide phosphorylase (PNP). The PNP reaction is an integral part of the neuronal response to stimulation, as inhibiting PNP leaves DGCs energetically impaired during recovery from strong activation. Performing MSI on brain slices bridges the gap between live cell physiology and the deep chemical analysis enabled by mass spectrometry.

12.
Nat Metab ; 5(10): 1820-1835, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37798473

RESUMEN

Neuronal activity creates an intense energy demand that must be met by rapid metabolic responses. To investigate metabolic adaptations in the neuron-enriched dentate granule cell (DGC) layer within its native tissue environment, we employed murine acute hippocampal brain slices, coupled with fast metabolite preservation and followed by mass spectrometry (MS) imaging, to generate spatially resolved metabolomics and isotope-tracing data. Here we show that membrane depolarization induces broad metabolic changes, including increased glycolytic activity in DGCs. Increased glucose metabolism in response to stimulation is accompanied by mobilization of endogenous inosine into pentose phosphates via the action of purine nucleotide phosphorylase (PNP). The PNP reaction is an integral part of the neuronal response to stimulation, because inhibition of PNP leaves DGCs energetically impaired during recovery from strong activation. Performing MS imaging on brain slices bridges the gap between live-cell physiology and the deep chemical analysis enabled by MS.


Asunto(s)
Giro Dentado , Neuronas , Ratones , Animales , Giro Dentado/fisiología , Membrana Celular , Isótopos , Metabolómica
13.
J Neurosci ; 31(23): 8689-96, 2011 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-21653873

RESUMEN

ATP-sensitive potassium channels (K(ATP) channels) are important sensors of cellular metabolic state that link metabolism and excitability in neuroendocrine cells, but their role in nonglucosensing central neurons is less well understood. To examine a possible role for K(ATP) channels in modulating excitability in hippocampal circuits, we recorded the activity of single K(ATP) channels in cell-attached patches of granule cells in the mouse dentate gyrus during bursts of action potentials generated by antidromic stimulation of the mossy fibers. Ensemble averages of the open probability (p(open)) of single K(ATP) channels over repeated trials of stimulated spike activity showed a transient increase in p(open) in response to action potential firing. Channel currents were identified as K(ATP) channels through blockade with glibenclamide and by comparison with recordings from Kir6.2 knock-out mice. The transient elevation in K(ATP) p(open) may arise from submembrane ATP depletion by the Na(+)-K(+) ATPase, as the pump blocker strophanthidin reduced the magnitude of the elevation. Both the steady-state and stimulus-elevated p(open) of the recorded channels were higher in the presence of the ketone body R-ß-hydroxybutyrate, consistent with earlier findings that ketone bodies can affect K(ATP) activity. Using perforated-patch recording, we also found that K(ATP) channels contribute to the slow afterhyperpolarization following an evoked burst of action potentials. We propose that activity-dependent opening of K(ATP) channels may help granule cells act as a seizure gate in the hippocampus and that ketone-body-mediated augmentation of the activity-dependent opening could in part explain the effect of the ketogenic diet in reducing epileptic seizures.


Asunto(s)
Potenciales de Acción/fisiología , Giro Dentado/fisiología , Canales KATP/fisiología , Neuronas/fisiología , Animales , Electrofisiología , Activación del Canal Iónico/fisiología , Potenciales de la Membrana/fisiología , Ratones
14.
Nat Methods ; 6(2): 161-6, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19122669

RESUMEN

We constructed a fluorescent sensor of adenylate nucleotides by combining a circularly permuted variant of GFP with a bacterial regulatory protein, GlnK1, from Methanococcus jannaschii. The sensor's affinity for Mg-ATP was <100 nM, as seen for other members of the bacterial PII regulator family, a surprisingly high affinity given that normal intracellular ATP concentration is in the millimolar range. ADP bound the same site of the sensor as Mg-ATP, competing with it, but produced a smaller change in fluorescence. At physiological ATP and ADP concentrations, the binding site is saturated, but competition between the two substrates causes the sensor to behave as a nearly ideal reporter of the ATP:ADP concentration ratio. This principle for sensing the ratio of two analytes by competition at a high-affinity site probably underlies the normal functioning of PII regulatory proteins. The engineered sensor, Perceval, can be used to monitor the ATP:ADP ratio during live-cell imaging.


Asunto(s)
Adenosina Difosfato/análisis , Adenosina Trifosfato/análisis , Proteínas Arqueales/química , Proteínas Bacterianas/química , Colorantes Fluorescentes/química , Proteínas Luminiscentes/química , Proteínas Bacterianas/genética , Sitios de Unión , Técnicas Biosensibles/métodos , ADN Bacteriano/química , ADN Bacteriano/genética , Proteínas Luminiscentes/genética , Microscopía Fluorescente , Reacción en Cadena de la Polimerasa
15.
Elife ; 112022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36222651

RESUMEN

Cellular ATP that is consumed to perform energetically expensive tasks must be replenished by new ATP through the activation of metabolism. Neuronal stimulation, an energetically demanding process, transiently activates aerobic glycolysis, but the precise mechanism underlying this glycolysis activation has not been determined. We previously showed that neuronal glycolysis is correlated with Ca2+ influx, but is not activated by feedforward Ca2+ signaling (Díaz-García et al., 2021a). Since ATP-powered Na+ and Ca2+ pumping activities are increased following stimulation to restore ion gradients and are estimated to consume most neuronal ATP, we aimed to determine if they are coupled to neuronal glycolysis activation. By using two-photon imaging of fluorescent biosensors and dyes in dentate granule cell somas of acute mouse hippocampal slices, we observed that production of cytoplasmic NADH, a byproduct of glycolysis, is strongly coupled to changes in intracellular Na+, while intracellular Ca2+ could only increase NADH production if both forward Na+/Ca2+ exchange and Na+/K+ pump activity were intact. Additionally, antidromic stimulation-induced intracellular [Na+] increases were reduced >50% by blocking Ca2+ entry. These results indicate that neuronal glycolysis activation is predominantly a response to an increase in activity of the Na+/K+ pump, which is strongly potentiated by Na+ influx through the Na+/Ca2+ exchanger during extrusion of Ca2+ following stimulation.


Asunto(s)
Calcio , NAD , Animales , Ratones , NAD/metabolismo , Calcio/metabolismo , Sodio/metabolismo , Glucólisis/fisiología , Intercambiador de Sodio-Calcio/metabolismo , Hipocampo/metabolismo , Adenosina Trifosfato/metabolismo , Colorantes
16.
Nat Commun ; 13(1): 2919, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35614105

RESUMEN

Genetically encoded fluorescent biosensors are powerful tools used to track chemical processes in intact biological systems. However, the development and optimization of biosensors remains a challenging and labor-intensive process, primarily due to technical limitations of methods for screening candidate biosensors. Here we describe a screening modality that combines droplet microfluidics and automated fluorescence imaging to provide an order of magnitude increase in screening throughput. Moreover, unlike current techniques that are limited to screening for a single biosensor feature at a time (e.g. brightness), our method enables evaluation of multiple features (e.g. contrast, affinity, specificity) in parallel. Because biosensor features can covary, this capability is essential for rapid optimization. We use this system to generate a high-performance biosensor for lactate that can be used to quantify intracellular lactate concentrations. This biosensor, named LiLac, constitutes a significant advance in metabolite sensing and demonstrates the power of our screening approach.


Asunto(s)
Técnicas Biosensibles , Técnicas Biosensibles/métodos , Colorantes , Lactatos , Microfluídica
17.
J Am Chem Soc ; 133(26): 10034-7, 2011 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-21631110

RESUMEN

Intracellular pH affects protein structure and function, and proton gradients underlie the function of organelles such as lysosomes and mitochondria. We engineered a genetically encoded pH sensor by mutagenesis of the red fluorescent protein mKeima, providing a new tool to image intracellular pH in live cells. This sensor, named pHRed, is the first ratiometric, single-protein red fluorescent sensor of pH. Fluorescence emission of pHRed peaks at 610 nm while exhibiting dual excitation peaks at 440 and 585 nm that can be used for ratiometric imaging. The intensity ratio responds with an apparent pK(a) of 6.6 and a >10-fold dynamic range. Furthermore, pHRed has a pH-responsive fluorescence lifetime that changes by ~0.4 ns over physiological pH values and can be monitored with single-wavelength two-photon excitation. After characterizing the sensor, we tested pHRed's ability to monitor intracellular pH by imaging energy-dependent changes in cytosolic and mitochondrial pH.


Asunto(s)
Ingeniería Genética/métodos , Espacio Intracelular/química , Proteínas Luminiscentes/genética , Imagen Molecular/métodos , Animales , Línea Celular , Supervivencia Celular , Concentración de Iones de Hidrógeno , Espacio Intracelular/metabolismo , Ratones , Mutagénesis , Espectrometría de Fluorescencia , Proteína Fluorescente Roja
18.
Bio Protoc ; 11(24): e4259, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-35087918

RESUMEN

Genetically encoded fluorescent biosensors are versatile tools for studying brain metabolism and function in live tissue. The genetic information for these biosensors can be delivered into the brain by stereotaxic injection of engineered adeno-associated viruses (AAVs), which can selectively target different cell types depending on the capsid serotype and/or the viral promoter. Here, we describe a protocol for intracranial injections of two viral vectors encoding the metabolic biosensor Peredox and the calcium biosensor RCaMP1h. When combined with 2-photon microscopy and fluorescence lifetime imaging, this protocol allows the simultaneous quantitative assessment of changes in the cytosolic NADH/NAD+ ratio and the intracellular Ca2+ levels in individual dentate granule cells from acute hippocampal slices. Graphic abstract: Workflow diagram for biosensor expression in the mouse hippocampus using intracranial injections of adeno-associated viruses.

19.
Ann Clin Transl Neurol ; 8(8): 1730-1737, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34247456

RESUMEN

OBJECTIVE: Thousands of years after dietary therapy was proposed to treat seizures, how alterations in metabolism relates to epilepsy remains unclear, and metabolism-based therapies are not always effective. METHODS: We consider the state of the science in metabolism-based therapies for epilepsy across the research lifecycle from basic to translational to clinical studies. RESULTS: This analysis creates a conceptual framework for creative, rigorous, and transparent research to benefit people with epilepsy through the understanding and modification of metabolism. INTERPRETATION: Despite intensive past efforts to evaluate metabolism-based therapies for epilepsy, distinct ways of framing a problem offer the chance to engage different mindsets and new (or newly applied) technologies. A comprehensive, creative, and inclusive problem-directed research agenda is needed, with a renewed and stringent adherence to rigor and transparency across all levels of investigation.


Asunto(s)
Epilepsia/metabolismo , Epilepsia/terapia , Humanos
20.
Elife ; 102021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33555254

RESUMEN

When neurons engage in intense periods of activity, the consequent increase in energy demand can be met by the coordinated activation of glycolysis, the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation. However, the trigger for glycolytic activation is unknown and the role for Ca2+ in the mitochondrial responses has been debated. Using genetically encoded fluorescent biosensors and NAD(P)H autofluorescence imaging in acute hippocampal slices, here we find that Ca2+ uptake into the mitochondria is responsible for the buildup of mitochondrial NADH, probably through Ca2+ activation of dehydrogenases in the TCA cycle. In the cytosol, we do not observe a role for the Ca2+/calmodulin signaling pathway, or AMPK, in mediating the rise in glycolytic NADH in response to acute stimulation. Aerobic glycolysis in neurons is triggered mainly by the energy demand resulting from either Na+ or Ca2+ extrusion, and in mouse dentate granule cells, Ca2+ creates the majority of this demand.


Asunto(s)
Calcio/metabolismo , Ciclo del Ácido Cítrico , Neuronas/metabolismo , Animales , Encéfalo/citología , Encéfalo/metabolismo , Citosol/metabolismo , Metabolismo Energético , Femenino , Glucólisis , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , NAD/metabolismo , NADP/metabolismo , Fosforilación Oxidativa , Sodio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA