Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
AIDS ; 33(13): 1967-1976, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31259764

RESUMEN

OBJECTIVE: Maternal folate (vitamin B9) status is the largest known modifier of neural tube defect risk, so we evaluated folate-related mechanisms of action for dolutegravir (DTG) developmental toxicity. DESIGN: Folate receptor 1 (FOLR1) was examined as a target for DTG developmental toxicity using protein and cellular interaction studies and an animal model. METHODS: FOLR1 competitive binding studies were used to test DTG for FOLR1 antagonism. Human placenta cell line studies were used to test interactions with DTG, folate, and cations. Zebrafish were selected as an animal model to examine DTG-induced developmental toxicity and rescue strategies. RESULTS: FOLR1 binding studies indicate DTG is a noncompetitive FOLR1 antagonist at therapeutic concentrations. In-vitro testing indicates calcium (2 mmol/l) increases FOLR1-folate interactions and alters DTG-FOLR1-folate interactions and cytotoxicity. DTG does not inhibit downstream folate metabolism by dihydrofolate reductase. Early embryonic exposure to DTG is developmentally toxic in zebrafish, and supplemental folic acid can mitigate DTG developmental toxicity. CONCLUSION: Folates and FOLR1 are established modifiers of risk for neural tube defects, and binding data indicates DTG is a partial antagonist of FOLR1. Supplemental folate can ameliorate increased developmental toxicity due to DTG in zebrafish. The results from these studies are expected to inform and guide future animal models and clinical studies of DTG-based antiretroviral therapy in women of childbearing age.


Asunto(s)
Receptor 1 de Folato/antagonistas & inhibidores , Ácido Fólico/administración & dosificación , Compuestos Heterocíclicos con 3 Anillos/toxicidad , Proteínas de Pez Cebra/antagonistas & inhibidores , Pez Cebra/embriología , Animales , Línea Celular , Suplementos Dietéticos , Desarrollo Embrionario/efectos de los fármacos , Femenino , Receptor 1 de Folato/genética , Infecciones por VIH/tratamiento farmacológico , Inhibidores de Integrasa VIH/toxicidad , Humanos , Modelos Animales , Oxazinas , Piperazinas , Embarazo , Piridonas , Pruebas de Toxicidad , Pez Cebra/genética , Proteínas de Pez Cebra/genética
2.
Genetics ; 209(1): 115-128, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29500182

RESUMEN

The Ku heterodimer acts centrally in nonhomologous end-joining (NHEJ) of DNA double-strand breaks (DSB). Saccharomyces cerevisiae Ku, like mammalian Ku, binds and recruits NHEJ factors to DSB ends. Consequently, NHEJ is virtually absent in yeast Ku null (yku70∆ or yku80∆) strains. Previously, we unexpectedly observed imprecise NHEJ proficiency in a yeast Ku mutant with impaired DNA end-binding (DEB). However, how DEB impairment supported imprecise NHEJ was unknown. Here, we found imprecise NHEJ proficiency to be a feature of a panel of DEB-impaired Ku mutants and that DEB impairment resulted in a deficiency in precise NHEJ. These results suggest that DEB-impaired Ku specifically promotes error-prone NHEJ. Epistasis analysis showed that classical NHEJ factors, as well as novel and previously characterized NHEJ-specific residues of Ku, are required for the distinct error-prone repair in a Ku DEB mutant. However, sequencing of repair junctions revealed that imprecise repair in Ku DEB mutants was almost exclusively characterized by small deletions, in contrast to the majority of insertions that define imprecise repair in wild-type strains. Notably, while sequencing indicated a lack of Pol4-dependent insertions at the site of repair, Pol2 exonuclease activity, which mediates small deletions in NHEJ, contributed to imprecise NHEJ in a Ku DEB mutant. The deletions were smaller than in Ku-independent microhomology-mediated end-joining (MMEJ) and were neither promoted by Mre11 nuclease activity nor Sae2 Thus, the quality of Ku's engagement at the DNA end influences end-processing during NHEJ and DEB impairment unmasks a Ku-dependent error-prone pathway of end-joining distinct from MMEJ.


Asunto(s)
Reparación del ADN por Unión de Extremidades , Reparación del ADN , Autoantígeno Ku/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Unión al ADN/metabolismo , Autoantígeno Ku/genética , Mutación , Unión Proteica , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Telómero/genética , Telómero/metabolismo
3.
Biosci Rep ; 37(6)2017 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-29175998

RESUMEN

The ring-forming Hsp104 ATPase cooperates with Hsp70 and Hsp40 molecular chaperones to rescue stress-damaged proteins from both amorphous and amyloid-forming aggregates. The ability to do so relies upon pore loops present in the first ATP-binding domain (AAA-1; loop-1 and loop-2 ) and in the second ATP-binding domain (AAA-2; loop-3) of Hsp104, which face the protein translocating channel and couple ATP-driven changes in pore loop conformation to substrate translocation. A hallmark of loop-1 and loop-3 is an invariable and mutational sensitive aromatic amino acid (Tyr257 and Tyr662) involved in substrate binding. However, the role of conserved aliphatic residues (Lys256, Lys258, and Val663) flanking the pore loop tyrosines, and the function of loop-2 in protein disaggregation has not been investigated. Here we present the crystal structure of an N-terminal fragment of Saccharomyces cerevisiae Hsp104 exhibiting molecular interactions involving both AAA-1 pore loops, which resemble contacts with bound substrate. Corroborated by biochemical experiments and functional studies in yeast, we show that aliphatic residues flanking Tyr257 and Tyr662 are equally important for substrate interaction, and abolish Hsp104 function when mutated to glycine. Unexpectedly, we find that loop-2 is sensitive to aspartate substitutions that impair Hsp104 function and abolish protein disaggregation when loop-2 is replaced by four aspartate residues. Our observations suggest that Hsp104 pore loops have non-overlapping functions in protein disaggregation and together coordinate substrate binding, unfolding, and translocation through the Hsp104 hexamer.


Asunto(s)
Proteínas de Choque Térmico/genética , Chaperonas Moleculares/genética , Agregado de Proteínas/genética , Desplegamiento Proteico , Proteínas de Saccharomyces cerevisiae/genética , Proteínas del Choque Térmico HSP40/química , Proteínas del Choque Térmico HSP40/genética , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/genética , Proteínas de Choque Térmico/química , Chaperonas Moleculares/química , Unión Proteica , Multimerización de Proteína , Transporte de Proteínas/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA