Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Biol Chem ; 292(23): 9583-9598, 2017 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-28438837

RESUMEN

Aggregation of specific proteins in the brains of patients with chronic mental illness as a result of disruptions in proteostasis is an emerging theme in the study of schizophrenia in particular. Proteins including DISC1 (disrupted in schizophrenia 1) and dysbindin-1B are found in insoluble forms within brain homogenates from such patients. We recently identified TRIOBP-1 (Trio-binding protein 1, also known as Tara) to be another such protein through an epitope discovery and proteomics approach by comparing post-mortem brain material from schizophrenia patients and control individuals. We hypothesized that this was likely to occur as a result of a specific subcellular process and that it, therefore, should be possible to identify a region of the TRIOBP-1 protein that is essential for its aggregation to occur. Here, we probe the domain organization of TRIOBP-1, finding it to possess two distinct coiled-coil domains: the central and C-terminal domains. The central domain inhibits the depolymerization of F-actin and is also responsible for oligomerization of TRIOBP-1. Along with an N-terminal pleckstrin homology domain, the central domain affects neurite outgrowth. In neuroblastoma cells it was found that the aggregation propensity of TRIOBP-1 arises from its central domain, with a short "linker" region narrowed to within amino acids 324-348, between its first two coiled coils, as essential for the formation of TRIOBP-1 aggregates. TRIOBP-1 aggregation, therefore, appears to occur through one or more specific cellular mechanisms, which therefore have the potential to be of physiological relevance for the biological process underlying the development of chronic mental illness.


Asunto(s)
Actinas , Proteínas de Microfilamentos , Agregación Patológica de Proteínas , Actinas/química , Actinas/genética , Actinas/metabolismo , Línea Celular Tumoral , Humanos , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Dominios Homólogos a Pleckstrina , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/metabolismo
2.
J Biol Chem ; 292(16): 6468-6477, 2017 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-28249940

RESUMEN

Disrupted in Schizophrenia 1 (DISC1) is a scaffolding protein of significant importance for neurodevelopment and a prominent candidate protein in the pathology of major mental illness. DISC1 modulates a number of critical neuronal signaling pathways through protein-protein interactions; however, the mechanism by which this occurs and how DISC1 causes mental illness is unclear, partly because knowledge of the structure of DISC1 is lacking. A lack of homology with known proteins has hindered attempts to define its domain composition. Here, we employed the high-throughput Expression of Soluble Proteins by Random Incremental Truncation (ESPRIT) technique to identify discretely folded regions of human DISC1 via solubility assessment of tens of thousands of fragments of recombinant DISC1. We identified four novel structured regions, named D, I, S, and C, at amino acids 257-383, 539-655, 635-738, and 691-836, respectively. One region (D) is located in a DISC1 section previously predicted to be unstructured. All regions encompass coiled-coil or α-helical structures, and three are involved in DISC1 oligomerization. Crucially, three of these domains would be lost or disrupted by a chromosomal translocation event after amino acid 597, which has been strongly linked to major mental illness. Furthermore, we observed that a known illness-related frameshift mutation after amino acid 807 causes the C region to form aberrantly multimeric and aggregated complexes with an unstable secondary structure. This newly revealed domain architecture of DISC1, therefore, provides a powerful framework for understanding the critical role of this protein in a variety of devastating mental illnesses.


Asunto(s)
Mutación , Proteínas del Tejido Nervioso/química , Trastornos Psicóticos/genética , Esquizofrenia/genética , Mutación del Sistema de Lectura , Humanos , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Desnaturalización Proteica , Dominios Proteicos , Pliegue de Proteína , Mapeo de Interacción de Proteínas , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Transducción de Señal
3.
Biol Chem ; 394(11): 1425-37, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23832957

RESUMEN

Disrupted-in-Schizophrenia 1 (DISC1) is a widely-accepted genetic risk factor for schizophrenia and many other major mental illnesses. Traditionally DISC1 has been referred to as a 'scaffold protein' because of its ability to bind to a wide array of other proteins, including those of importance for neurodevelopment. Here, we review the characteristic properties shared between established scaffold proteins and DISC1. We find DISC1 to have many, but not all, of the characteristics of a scaffold protein, as it affects a considerable number of different, but related, signaling pathways, in most cases through inhibition of key enzymes. Using threading algorithms, the C-terminal portion of DISC1 could be mapped to extended helical structures, yet it may not closely resemble any of the known tertiary folds. While not completely fitting the classification of a classical scaffold protein, DISC1 does appear to be a tightly regulated and multi-faceted inhibitor of a wide range of enzymes from interrelated signaling cascades (Diverse Inhibitor of Signaling Cascades), which together contribute to neurodevelopment and synaptic homeostasis. Consequently, disruption of this complex regulation would be expected to lead to the range of major mental illnesses in which the DISC1 gene has been implicated.


Asunto(s)
Proteínas del Tejido Nervioso/química , Proteínas Asociadas a Matriz Nuclear/química , Humanos , Trastornos Mentales/genética , Trastornos Mentales/metabolismo , Modelos Moleculares , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Proteínas Asociadas a Matriz Nuclear/genética , Proteínas Asociadas a Matriz Nuclear/fisiología , Unión Proteica/genética , Unión Proteica/fisiología , Transporte de Proteínas/genética , Transducción de Señal/genética , Transducción de Señal/fisiología
4.
PLoS One ; 13(1): e0191162, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29324815

RESUMEN

Accumulating evidence suggests an important role for the Disrupted-in-Schizophrenia 1 (DISC1) protein in neurodevelopment and chronic mental illness. In particular, the C-terminal 300 amino acids of DISC1 have been found to mediate important protein-protein interactions and to harbor functionally important phosphorylation sites and disease-associated polymorphisms. However, long disordered regions and oligomer-forming subdomains have so far impeded structural analysis. VHH domains derived from camelid heavy chain only antibodies are minimal antigen binding modules with appreciable solubility and stability, which makes them well suited for the stabilizing proteins prior to structural investigation. Here, we report on the generation of a VHH domain derived from an immunized Lama glama, displaying high affinity for the human DISC1 C region (aa 691-836), and its characterization by surface plasmon resonance, size exclusion chromatography and immunological techniques. The VHH-DISC1 (C region) complex was also used for structural investigation by small angle X-ray scattering analysis. In combination with molecular modeling, these data support predictions regarding the three-dimensional fold of this DISC1 segment as well as its steric arrangement in complex with our VHH antibody.


Asunto(s)
Camélidos del Nuevo Mundo/inmunología , Proteínas del Tejido Nervioso/inmunología , Anticuerpos de Cadena Única/química , Secuencia de Aminoácidos , Animales , Complejo Antígeno-Anticuerpo/química , Complejo Antígeno-Anticuerpo/genética , Reacciones Antígeno-Anticuerpo , Fenómenos Biofísicos , Camélidos del Nuevo Mundo/genética , Mapeo Epitopo , Femenino , Humanos , Cadenas Pesadas de Inmunoglobulina/química , Cadenas Pesadas de Inmunoglobulina/genética , Ratones , Modelos Moleculares , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/inmunología , Dominios y Motivos de Interacción de Proteínas , Dispersión del Ángulo Pequeño , Anticuerpos de Cadena Única/genética , Resonancia por Plasmón de Superficie , Difracción de Rayos X
5.
Nat Commun ; 6: 7552, 2015 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-26113036

RESUMEN

Proofreading modules of aminoacyl-tRNA synthetases are responsible for enforcing a high fidelity during translation of the genetic code. They use strategically positioned side chains for specifically targeting incorrect aminoacyl-tRNAs. Here, we show that a unique proofreading module possessing a D-aminoacyl-tRNA deacylase fold does not use side chains for imparting specificity or for catalysis, the two hallmark activities of enzymes. We show, using three distinct archaea, that a side-chain-stripped recognition site is fully capable of solving a subtle discrimination problem. While biochemical probing establishes that RNA plays the catalytic role, mechanistic insights from multiple high-resolution snapshots reveal that differential remodelling of the catalytic core at the RNA-peptide interface provides the determinants for correct proofreading activity. The functional crosstalk between RNA and protein elucidated here suggests how primordial enzyme functions could have emerged on RNA-peptide scaffolds before recruitment of specific side chains.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Edición de ARN/fisiología , ARN/metabolismo , Aminoacil-ARNt Sintetasas/genética , Proteínas Bacterianas/genética , Dominio Catalítico , Clonación Molecular , Regulación Enzimológica de la Expresión Génica , Modelos Moleculares , Conformación Proteica , Procesamiento Proteico-Postraduccional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA