RESUMEN
Aeromonas is the main pathogen causing bacterial diseases in fish. The disadvantages of chemical drugs to control fish diseases have been highlighted, and it is urgent to find an eco-friendly control method. In this study, an actinomycete strain with antibacterial activity against fish pathogenic bacteria was screened from soil samples. Combined with morphological characteristics, physiological and biochemical characteristics, and gyrB gene and whole genome comparison analysis, it was identified as a new strain of Streptomyces enissocaesilis, named Streptomyces enissocaesilis L-82. The strain has broad-spectrum antibacterial activity against fish pathogens. A substance with a mass-to-charge ratio of 227.20 [M + H] + was isolated and purified by high-performance liquid chromatography and mass spectrometry. It was presumed to be a derivative of 5-dimethylallylindole-3-acetonitrile. The strain is safe and non-toxic to crucian carp, and can stably colonize crucian carp and inhibit the proliferation of A. hydrophila. After feeding the feed containing 1 × 108 CFU/mL strain concentration, the weight growth rate and specific growth rate of crucian carp increased, the activity of ACP and SOD in serum increased, and the survival rate of crucian carp increased after challenge. Genome-wide analysis showed that the strain had strong ability to metabolize and tolerate extreme environments. And has a strong potential for disease resistance. Therefore, the strain is expected to be developed as a feed additive for fish farming. KEY POINTS: ⢠The new Streptomyces enissocaesilis L-82 has a broad spectrum and stable antibacterial activity and meets the safety standards of feed additives. ⢠Strain L-82 can colonize crucian carp, improve the growth, antioxidant, and immune performance of the host, and improve the survival rate after being infected with A. hydrophila. ⢠Genome-wide analysis suggests that the strain has great disease resistance potential and is expected to be developed as a feed additive for fish culture.
Asunto(s)
Carpas , Carpa Dorada , Streptomyces , Animales , Resistencia a la Enfermedad , Antibacterianos/farmacologíaRESUMEN
Serratia marcescens is a Gram-negative bacterium of the Enterobacteriaceae family that can produce numbers of biologically active secondary metabolites. However, our understanding of the regulatory mechanisms behind secondary metabolites biosynthesis in S. marcescens remains limited. In this study, we identified an uncharacterized LysR family transcriptional regulator, encoding gene BVG90_12635, here we named psrA, that positively controlled prodigiosin synthesis in S. marcescens. This phenotype corresponded to PsrA positive control of transcriptional of the prodigiosin-associated pig operon by directly binding to a regulatory binding site (RBS) and an activating binding site (ABS) in the promoter region of the pig operon. We demonstrated that L-proline is an effector for the PsrA, which enhances the binding affinity of PsrA to its target promoters. Using transcriptomics and further experiments, we show that PsrA indirectly regulates pleiotropic phenotypes, including serrawettin W1 biosynthesis, extracellular polysaccharide production, biofilm formation, swarming motility and T6SS-mediated antibacterial activity in S. marcescens. Collectively, this study proposes that PsrA is a novel regulator that contributes to antibiotic synthesis, bacterial virulence, cell motility and extracellular polysaccharides production in S. marcescens and provides important clues for future studies exploring the function of the PsrA and PsrA-like proteins which are widely present in many other bacteria.
Asunto(s)
Proteínas Bacterianas/genética , Biopelículas , Prodigiosina/biosíntesis , Serratia marcescens/genética , Factores de Transcripción/genética , Proteínas Bacterianas/metabolismo , Depsipéptidos/biosíntesis , Movimiento , Operón , Polisacáridos Bacterianos/biosíntesis , Regiones Promotoras Genéticas , Serratia marcescens/metabolismo , Serratia marcescens/patogenicidad , Factores de Transcripción/metabolismoRESUMEN
The present study explored the effects of inositol on growth performance, body composition, antioxidant performance, and lipid metabolism of largemouth bass (Micropterus salmoides). Six isonitrogenous and isolipidic diets containing 0 mg/kg (G1, control), 125 mg/kg (G2), 250 mg/kg (G3), 375 mg/kg (G4), 500 mg/kg (G5), and 625 mg/kg (G6) inositol were prepared and fed to cultured fish (initial weight: 110 ± 1 g) for 8 weeks in recirculating the aquaculture systems. The results indicated that compared with G1 group, the weight gain rate (WGR), specific growth rate (SGR), and feed efficiency rate (FER) in the G3 group were significantly higher. The crude lipid content of the whole fish and the liver of cultured fish was significantly reduced with increasing dietary inositol inclusion. However, no significant effects on moisture, crude protein, and ash contents of fish were observed among the different groups. Dietary inositol supplementation significantly increased muscular crude protein. However, muscular total lipid contents were decreased when the inclusion level was higher than 250 mg/kg (G3-G6 groups). As dietary inositol supplemental level increased, serum triglyceride (TG), and cholesterol (TC) contents showed an increasing trend and reached the maximum value in the G3 group. Additionally, serum low-density lipoprotein cholesterol (LDL-C) in G2, G3, G4, and G5 groups was significantly upregulated by increasing inositol. While, there was no significant change in serum high-density lipoprotein cholesterol (HDL-C) among the treatments. Inositol inclusion also significantly reduced the serum alkaline phosphatase (AKP), glutamic-pyruvic transaminase (ALT), and glutamic-oxaloacetic transaminase (AST) activities as well as serum malondialdehyde (MDA) content but significantly increased serum catalase (CAT), superoxide dismutase (SOD) activities, and total antioxidant capacity (T-AOC). Compared with the control group, the activities of hepatic total lipase (TL) and lipoprotein lipase (LPL) were significantly elevated in the G3, G4, and G5 groups. Above all, dietary inositol supplementation could improve growth performance and antioxidant capacity, and reduce the liver fat content of largemouth bass, and the optimal supplementation level of inositol in feed is estimated to be 250.31-267.27 mg/kg.
RESUMEN
The Streptomyces lateritius Z1-26 was isolated from soil samples which showed broad-spectrum antibacterial activity against a broad range of fish pathogens. The In Vivo Imaging System (IVIS) monitored that strain Z1-26 could survive and colonize in the gills and abdomen of crucian carp. The effects of dietary supplementation with strain Z1-26 were evaluated with respect to the growth performance, antioxidant capacity, and immune response of crucian carp. The results showed that the Z1-26-fed fish had a significantly higher growth rate than the fish fed the control diet. The immune and antioxidant parameters revealed that the non-specific immune indicators (AKP, SOD, and LZM) of the serum, the expression of immune-related genes (IgM, C3, and LZM), and antioxidant-related genes (Nrf2 and Keap1) of the immune organs were significantly increased, whereas the expression of pro-inflammatory factors (IL-1ß, IL-8, and TNF-α) of the immune organs was significantly down-regulated in crucian carp fed strain Z1-26 compared with fish fed a control diet. Moreover, fish fed with Z1-26 supplemented diets showed a significantly improved survival rate after Aeromonas hydrophila infection. In addition, the whole genome analysis showed that strain Z1-26 possesses 28 gene clusters, including 6 polyketide synthetase (PKS), 4 non-ribosomal peptide-synthetase (NRPS), 1 bacteriocin, and 1 lantipeptide. In summary, these results indicated that strain Z1-26 could improve the growth performance and disease resistance in crucian carp, and has the potential to be developed as a candidate probiotics for the control of bacterial diseases in aquaculture.
Asunto(s)
Carpas , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Animales , Carpa Dorada/genética , Carpas/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Antioxidantes/metabolismo , Enfermedades de los Peces/microbiología , Factor 2 Relacionado con NF-E2/metabolismo , Dieta , Antibacterianos/farmacología , Aeromonas hydrophila/fisiología , Proteínas de Peces/genética , Alimentación Animal/análisisRESUMEN
Aeromonas veronii AvX005 is a pathogenic bacterium with high toxicity to grass carp (Ctenopharyngodon idellus). The expression levels of g-type (goose-type lysozyme, Lys-g) and c-type lysozyme (chicken-type lysozyme, Lys-c) in the spleen of grass carp infected with AvX005 were significantly increased by approximately 4.5 times and 27 times, respectively. The recombinant proteins rLys-g and rLys-c produced in a recombinant expression system of Escherichia coli showed significant antibacterial activity against the pathogenic bacteria AvX005. A challenge test was conducted after rLys-g and rLys-c were expressed in grass carp L8824 liver cells, and compared with the survival rate of the control cells (46.3%), the survival rate of the experimental cells (77.6% for rLys-g and 68.6% for rLys-c) was significantly increased. Grass carp were infected with AvX005 on the second day after delivering pcDNA3.1-lys-g and pcDNA-lys-c with the Quil A/cholesterol/DDA/Carbopol (QCDC) adjuvant, and both pcDNA3.1-lys-g and pcDNA-lys-c provided 70% relative protection for grass carp. The activity of lysozyme and alkaline phosphatase in the serum of grass carp was significantly increased after injection of DNA. The expression of the immune factors IgM, C3 and IL8 in the kidney was upregulated to varying degrees for pcDNA3.1-lys-g and immune factors C3 and IgM was upregulated for pcDNA-lys-c. The results indicated that pcDNA3.1-lys-g and pcDNA-lys-c may be used as immunostimulants to protect grass carp from the pathogenic bacterium AvX005.
Asunto(s)
Carpas , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Resinas Acrílicas , Adyuvantes Inmunológicos/farmacología , Aeromonas hydrophila/fisiología , Aeromonas veronii , Animales , Carpas/metabolismo , Colesterol , Enfermedades de los Peces/microbiología , Inmunidad Innata , Inmunoglobulina M , Muramidasa/genética , Muramidasa/farmacología , Saponinas de QuillajaRESUMEN
Many fishes infected with Pseudomonas plecoglossicida generally suffer from "visceral white spot disease" or even die. In this study, a dominant pathogen strain was isolated from the intestinal tract of diseased crucian carp in the Wangcheng Lake area, Changsha, and it was identified as P. plecoglossicida. The selected strain was a new strain named as P. plecoglossicida LQJ06.Strain LQJ06 basically colonized the intestine and poisoned zebrafish as show by fluorescent labelling. Pathological structural analysis of tissue sections indicated that the intestinal tract was seriously damaged, epithelial cells in the intestinal tissue were necrotic, intestinal villi were sloughed, liver cells were vacuolated, nuclei were pyknotic and shifted, and lymphocytes were proliferated in the spleen. P. plecoglossicida LQJ06 strain could invade and proliferate in the grass carp liver cell line L8824, which led to a stress response, including apoptosis. Cell morphology was changed owing to the toxicity of the culture supernatant of the LQJ06 strain, which mainly manifested as aggregation between cells, pyknosisd and slow growth or even death. An inactivated vaccine derived from P. plecoglossicida LQJ06 prepared in this study was safe and nontoxic to grass carp liver cells. Compared with those after oral administration, most of the cellular immune factors were expressed earlier and at a higher level after injection immunization. The intestinal tract and liver from zebrafish mainly expressed the IFN-γ2 and IL-1ß genes, respectively, after immunization. The upregulation of these immune-related genes proved that the vaccine could strengthen the immunity of zebrafish, induce inflammation and promote resistance to pathogenic infection. The results of these preliminary tests provide a scientific basis for further research on the prevention and control of P. plecoglossicida, and an essential preliminary basis for the development of an inactivated vaccine against P. plecoglossicida.
Asunto(s)
Carpas , Enfermedades de los Peces , Animales , Enfermedades de los Peces/prevención & control , Pseudomonas , Vacunas de Productos Inactivados , Virulencia , Pez CebraRESUMEN
A 56-day feeding trial was conducted to investigate the effects of dietary proteolytic soybean meal (PSM) on growth performance, immune-related genes, and resistance against Vibrio alginolyticus in Litopenaeus vannamei. Six dietary levels of PSM (0, 35, 45, 55, and 65 g/kg) were added to a basal diet. The results showed that juveniles fed more than 45 g/kg PSM exhibited significantly (P < 0.05) promoted growth performance compared to the control. Furthermore, all PSM supplemented treatments showed significantly better performances in terms of feed conversion ratio (FCR), the protein efficiency ratio (PER), and the protein deposition ratio (PDR). Corresponding to the performances on growth and nutrient utilization, a significantly higher protease activity in hepatopancreas was also obtained in all PSM incorporations. Also, the activities of immune-related enzymes such as superoxide dismutase (SOD) and lysozyme in serum were significantly (P < 0.05) elevated in shrimp fed with PSM. Notably, shrimp fed with the 65 g/kg PSM supplemented diet showed significantly (P < 0.05) lower cumulative mortality compared to the control after challenging with Vibrio alginolyticus injection at 72 h. PSM supplementation significantly (P < 0.05) upregulated expression levels of immune deficiency (IMD) and Toll-like receptor 2 mRNA in shrimp gill tissues directly or indirectly reflected their activation effect in shrimp innate immune response. In conclusion, the current study proved that partial replacement of soybean meal with PSM could result in better growth and immune status of L. vannamei.
RESUMEN
In Serratia marcescens JNB5-1, prodigiosin was highly produced at 30°C, but it was noticeably repressed at ≥37°C. Our initial results demonstrated that both the production and the stability of the O-methyl transferase (PigF) and oxidoreductase (PigN) involved in the prodigiosin pathway in S. marcescens JNB5-1 sharply decreased at ≥37°C. Therefore, in this study, we improved mRNA stability and protein production using de novo polynucleotide fragments (PNFs) and the introduction of disulfide bonds, respectively, and observed their effects on prodigiosin production. Our results demonstrate that adding PNFs at the 3' untranslated regions of pigF and pigN significantly improved the mRNA half-lives of these genes, leading to an increase in the transcript and expression levels. Subsequently, the introduction of disulfide bonds in pigF improved the thermal stability, pH stability, and copper ion resistance of PigF. Finally, shake flask fermentation showed that the prodigiosin titer with the engineered S. marcescens was increased by 61.38% from 5.36 to 8.65 g/liter compared to the JNB5-1 strain at 30°C and, significantly, the prodigiosin yield increased 2.05-fold from 0.38 to 0.78 g/liter at 37°C. In this study, we revealed that the introduction of PNFs and disulfide bonds greatly improved the expression and stability of pigF and pigN, hence efficiently enhancing prodigiosin production with S. marcescens at 30 and 37°C. IMPORTANCE This study highlights a promising strategy to improve mRNA/enzyme stability and to increase production using de novo PNF libraries and the introduction of disulfide bonds into the protein. PNFs could increase the half-life of target gene mRNA and effectively prevent its degradation. Moreover, PNFs could increase the relative intensity of target genes without affecting the expression of other genes; as a result, it could alleviate the cellular burden compared to other regulatory elements such as promoters. In addition, we obtained a PigF variant with improved activity and stability by the introduction of disulfide bonds into PigF. Collectively, we demonstrate here a novel approach for improving mRNA/enzyme stability using PNFs, which results in enhanced prodigiosin production in S. marcescens at 30°C.
Asunto(s)
Proteínas Bacterianas/genética , Metiltransferasas/genética , Prodigiosina/biosíntesis , Serratia marcescens/genética , Serratia marcescens/metabolismo , Regiones no Traducidas 3' , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Disulfuros/química , Fermentación , Concentración de Iones de Hidrógeno , Metiltransferasas/química , Metiltransferasas/metabolismo , Simulación de Dinámica Molecular , Polinucleótidos/genética , Estabilidad Proteica , ARN Mensajero/genética , TemperaturaRESUMEN
Prodigiosin (PG), a red linear tripyrrole pigment normally secreted by Serratia marcescens, has received attention for its reported immunosuppressive, antimicrobial, and anticancer properties. Although several genes have been shown to be important for prodigiosin synthesis, information on the regulatory mechanisms behind this cellular process remains limited. In this work, we identified that the transcriptional regulator RcsB encoding gene BVG90_13250 (rcsB) negatively controlled prodigiosin biosynthesis in S. marcescens Disruption of rcsB conferred a remarkably increased production of prodigiosin. This phenotype corresponded to negative control of transcription of the prodigiosin-associated pig operon by RcsB, probably by binding to the promoter region of the prodigiosin synthesis positive regulator FlhDC. Moreover, using transcriptomics and further experiments, we revealed that RcsB also controlled some other important cellular processes, including swimming and swarming motilities, capsular polysaccharide production, biofilm formation, and acid resistance (AR), in S. marcescens Collectively, this work proposes that RcsB is a prodigiosin synthesis repressor in S. marcescens and provides insight into the regulatory mechanism of RcsB in cell motility, capsular polysaccharide production, and acid resistance in S. marcescensIMPORTANCE RcsB is a two-component response regulator in the Rcs phosphorelay system, and it plays versatile regulatory functions in Enterobacteriaceae However, information on the function of the RcsB protein in bacteria, especially in S. marcescens, remains limited. In this work, we illustrated experimentally that the RcsB protein was involved in diverse cellular processes in S. marcescens, including prodigiosin synthesis, cell motility, capsular polysaccharide production, biofilm formation, and acid resistance. Additionally, the regulatory mechanism of the RcsB protein in these cellular processes was investigated. In conclusion, this work indicated that RcsB could be a regulator for prodigiosin synthesis and provides insight into the function of the RcsB protein in S. marcescens.
Asunto(s)
Proteínas Bacterianas/genética , Prodigiosina/biosíntesis , Serratia marcescens/metabolismo , Regulación Bacteriana de la Expresión Génica , Operón , Serratia marcescens/genéticaRESUMEN
The Streptomyces virginiae strain W18 was screened from soil, which exhibited broad-spectrum antibacterial activity against fish pathogens. Safety assays showed that strain W18 had no toxicity to fish. Additionally, strain W18 promoted the growth performance of Carassius auratus after feeding in feed mixed with bacteria for one month. Moreover, the activities of AKP, ACP, and SOD in the serum of C. auratus were significantly increased, while the activity of LZM did not greatly change. To detect the expression levels of the genes related to immune factors in the livers, kidneys, and spleens of C. auratus, qRT-PCR was performed. The expression levels of KEAP1, IL-8, TNF-α, IL-ß, and C3 were upregulated in all three organs compared to the control, but LZM expression was downregulated in the kidney. The challenge experiment illustrated that the probability of infection with Aeromonas veronii was reduced by 60% and 40% when C. auratus was fed with two different doses of strain W18 in advance. The whole genome of strain W18 was sequenced, and the gene clusters of secondary metabolites in strain W18 were analyzed by AntiSMASH. The results showed that strain W18 contained a total of 26 gene clusters, and functional annotation analysis was conducted by using the non-coding databases COG and KEGG. All of the above results indicated that the use of strain W18 as a feed additive could enhance the resistance of C. auratus toward pathogenic bacteria and disease. In conclusion, an antagonistic strain (W18) against fish pathogenic bacteria was obtained in this study, which is of great significance for finding new treatment methods for bacterial diseases in the aquaculture industry.
Asunto(s)
Aeromonas veronii/patogenicidad , Resistencia a la Enfermedad , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Streptomyces , Alimentación Animal , Animales , Antibiosis , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/prevención & control , Carpa Dorada , Infecciones por Bacterias Gramnegativas/veterinaria , Streptomyces/genéticaRESUMEN
Aeromonas veronii is a widely distributed novel pathogen that can affect humans and animals, it can cause sepsis in fish with high mortality and serious economic losses to aquaculture. In the study, the gut microbiome of the infected and uninfected grass carp with Aeromonas veronii were analyzed probiotics and pathogenic bacteria by the Miseq high-throughput sequencing, the results showed that the infected fish were significantly higher in Proteobacteria, Firmicutes, Fusobacteria, and the immune factors in liver and kidney were up-regulated by qRT-PCR. In order to effectively inhibit the pathogen, we screened an actinomycete strain and had good antibacterial effect on Aeromonas veronii. The new antagonistic bacteria was named as Streptomyces flavotricini X101, the whole genome sequencing revealed that the metabolic process was most active. After grass carp was inoculated with the minimum inhibitory concentration of 900 µg/mL of the strain's fermentation supernatant, then Aeromonas veronii was injected, we found that the pathological symptoms such as body surface, anus and abdominal congestion were alleviated by H&E staining. Cellular experiments showed that it wasn't toxic to liver cells of grass carp. Overall, this is the first study of changes in intestinal flora, phenotype, and immune factors in grass crap infected with Aeromonas veronii, it had important theoretical significance and application value for immunization and prevention.
Asunto(s)
Aeromonas veronii/fisiología , Carpas/microbiología , Enfermedades de los Peces/microbiología , Microbioma Gastrointestinal , Infecciones por Bacterias Gramnegativas/veterinaria , Streptomyces/fisiología , Animales , Carpas/inmunología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/patología , Microbioma Gastrointestinal/genética , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/microbiología , Infecciones por Bacterias Gramnegativas/patología , Secuenciación de Nucleótidos de Alto Rendimiento , Inmunoglobulina M/metabolismo , Interleucinas/metabolismo , ARN Ribosómico 16S/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Streptomyces/genéticaRESUMEN
In this study, a Streptomyces strain was isolated from the soil samples of Yanghu Wetland Park in Changsha, Hunan Province. This strain showed excellent antimicrobial activity against 10 fish pathogens, as indicated by the results of the agar-diffusion and oxford cup assays. After 16s rDNA sequencing and physiological & biochemical analyses, it was identified as Streptomyces amritsarensis, namely for S. amritsarensis N1-32. Cytotoxicity test was performed, and the results exhibited that this strain had no toxicity to hepatic L8824â¯cell line from grass carp liver. The diets supplemented strain N1-32â¯at concentrations of 1â¯×â¯107â¯cfu/g and 1â¯×â¯109â¯cfu/g was used to feed fish. After 28 days, the expression levels of antioxidant-related genes Nrf2 and Keap1 in the liver and spleen were significantly up-regulated, and the expression of immune-related gene IgM was notably increased in the liver, kidney, head-kidney, and spleen. Toll-like receptor 4 (TLR4) gene expression was up-regulated in the spleen, and TLR4, myeloid differentiation factor 88 (MyD88) gene were up-regulated in the kidney. The survival rate of grass carp was significantly improved after pathogen infection. Whole-genome analysis of N1-32 showed that the strain harbored related genes, capability for producing substances that enhance the immunity of grass carp and inhibit pathogens. A total of 22 gene clusters were identified in the genome, including 5 terpene gene clusters, 4 nonribosomal peptide-synthetase (NRPS) gene clusters and 2 lantipeptide gene clusters. In summary, these results showed that strain N1-32 as a feed additive could regulate grass carp immunity and enhance the resistance of grass carp against fish pathogens.
Asunto(s)
Antibacterianos/farmacología , Antioxidantes/metabolismo , Bacterias/efectos de los fármacos , Expresión Génica , Inmunidad Humoral , Probióticos/farmacología , Streptomyces/química , Alimentación Animal/análisis , Dieta/veterinaria , Expresión Génica/efectos de los fármacos , Genoma Bacteriano , Inmunidad Humoral/efectos de los fármacos , Probióticos/administración & dosificación , Streptomyces/genéticaRESUMEN
Large yellow croaker (Larimichthys crocea) is an economical important farmed fish in China. "Visceral White Spot Disease" caused by Pseudomonas plecoglossicida is a disease with a high mortality rate in cage-cultured L. crocea in recent years and resulted in heavy economy lossess. The dual RNA-seq results of previous study showed that the expression of clpV gene in P. plecoglossicida was significantly up-regulated during infection. RNAi significantly reduced the expression of clpV in P. plecoglossicida with maximum silencing efficiency of 96.1%. Compared with the wild type strain, infection of clpV-RNAi strain resulted in a delayed onset time and a 25% reduction in mortality of L. crocea, as well as lessening the symptoms of the spleen. The results of dual RNA-seq of L. crocea infected by clpV-RNAi strain of P. plecoglossicida changed considerably, compared with the counterpart infected with the wild strain. The KEGG enrichment analysis showed that Cytokine-cytokine receptor interaction, Toll-like receptor signaling pathway, C-type lectin receptor signaling pathway and MAPK signaling pathway of L. crocea were most affected by the silence of clpV in P. plecoglossicida. RNAi of clpV resulted in the downregulation of genes in flagella assembly pathway and a weaker immune response of host.
Asunto(s)
Proteínas Bacterianas/genética , Enfermedades de los Peces/inmunología , Interacciones Huésped-Patógeno/inmunología , Perciformes/inmunología , Transcriptoma/inmunología , Animales , Proteínas Bacterianas/metabolismo , Pseudomonas/fisiología , Infecciones por Pseudomonas/inmunología , Infecciones por Pseudomonas/veterinaria , Interferencia de ARN , RNA-Seq/veterinaria , Bazo/metabolismo , Bazo/microbiologíaRESUMEN
This study evaluated the inhibition and interaction of Bacillus velezensis BvL03 as a probiotic agent against Aeromonas hydrophila. Strain BvL03 isolated from sediment samples of fish ponds had excellent antimicrobial activity against several fish pathogenic bacteria, especially Aeromonas, including A. hydrophila, A. veronii, A. caviae, and A. sobria. The successful amplification of lipopeptide antimicrobial chemical biosynthetic genes, including iturin family (ituA, ituB, and ituD), bacillomycin family (bacA, bacD, and bacAB), surfactin family (srfAB, srfC, and srfAA), and subtilosin family (albF and sunT) from the genome of BvL03 strain, confirmed its predominant antimicrobial activity. The challenge test suggested that BvL03 significantly decreased fish mortality when challenged with A. hydrophila, which had a cumulative mortality of 12.5% in the treatment group. Toxicity and hemolytic activity of A. hydrophila after co-cultured with BvL03 were relieved as confirmed by the cell experiments, when the initial inoculated concentration of BvL03 was 109 cfu/mL or higher. Moreover, the BvL03 strain labeled with GFP protein (BvL03-GFP) and AhX040 strain labeled with mCherry protein (AhX040-mCherry) were injected into grass carps. The fluorescence levels were monitored by using In Vivo Imaging System (IVIS), in which the green color was steadily increasing, whereas the red color was gradually weakening. Whole genome sequencing revealed that strain BvL03 possesses 15 gene clusters related to antibacterial compounds, including 5 NRPS gene clusters and 3 PKS gene clusters. These results suggested that B. velezensis BvL03 has the potential to be developed as a probiotic candidate against A. hydrophila infection in aquaculture.
Asunto(s)
Aeromonas hydrophila/fisiología , Antibiosis/fisiología , Bacillus/fisiología , Agentes de Control Biológico/metabolismo , Carpas/microbiología , Enfermedades de los Peces/microbiología , Animales , Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/metabolismo , Bacteriocinas/genética , Bacteriocinas/metabolismo , Enfermedades de los Peces/prevención & control , Lipopéptidos/genética , Lipopéptidos/metabolismo , Péptidos Cíclicos/genética , Péptidos Cíclicos/metabolismo , Probióticos , Secuenciación Completa del GenomaRESUMEN
This study was conducted to evaluate the effects of Monascus purpureus M-32 fermented soybean meal (MFSM) on growth, immunity, intestinal morphology, intestinal microbiota, and intestinal metabolome of Pacific white shrimp (Litopenaeus vannamei). Four groups of diets were formulated, including control group (30% fish meal and 30% soybean meal [SBM] included in the basal diet) and three experimental groups which MFSM replaced 20% (MFSM20), 40% (MFSM40), and 60% (MFSM60) of SBM in control group, respectively. Results showed that the soluble proteins larger than 49 kDa in MFSM were almost completely degraded. Meanwhile, the crude protein, acid-soluble protein, and amino acid in MFSM were increased. The results of shrimp culture experiment showed that the replacement of SBM with MFSM decreased FCR (P < 0.001) and content of malondialdehyde (P = 0.007) in the experimental groups, and increased weight gain rate (P = 0.006), specific growth rate (P = 0.002), survival rate (P = 0.005), intestinal villus height (P < 0.001), myenteric thickness (P = 0.002), the activities of superoxide dismutase (P = 0.002), and lysozyme (P = 0.006) in experimental groups, as well as increased content of calcium (Ca2+) and phosphorus (PO43-) in blood and muscle, and enhanced resistance to Vibrio parahaemolyticus infection. The gut microbiota of MFSM groups was significantly different from that of the control group, and the abundance of Actinobacteria and Verrucomicrobia increased significantly in the MFSM60 group, whereas Proteobacteria and Firmicutes decreased. Compared with the control group, there were significant changes in the levels of several intestinal metabolites in the MFSM60 group, including leukotriene C5, prostaglandin A1, taurochenodeoxycholic acid, carnosine, and itaconic acid. The fermentation of SBM by the strain M. purpureus M-32 has the potential to enhance the nutritional quality of SBM, promote the growth of L. vannamei, boost immune response, improve intestinal morphology and microbiota composition, as well as influence intestinal metabolites.
RESUMEN
2,5-Dimethylpyrazine (2,5-DMP) is an important pharmaceutical intermediate and an important essence. Conventional chemical synthesis methods are often accompanied by toxic substances as by-products, and the biosynthesis efficiency of 2,5-DMP is insufficient for industrial applications. In this study, the tdh and soaao genes were overexpressed to enhance enzymatic and nonenzymatic reactions in metabolic pathways, and kbl was knocked out to block competitive branching carbon flow metabolic pathways. Finally, a genetically engineered Escherichia coli strain with the highest carbon recovery rate (30.18%) and the highest yield reported to date was successfully constructed, and 9.21 g·L-1 threonine was able to produce 1682 mg·L-1 2,5-DMP after 24 h. At the same time, an expression regulation strategy and whole-cell biocatalysis helped to eliminate the damage to cells caused by 2,5-DMP, aminoacetone, and reactive oxygen species generated by aminoacetone oxidase from S. oligofermentans, and the negative effect of 2-amino-3-ketobutyrate CoA ligase on the yield of 2,5-DMP in E. coli was also demonstrated.
Asunto(s)
Carbono , Escherichia coli , Escherichia coli/genética , Ingeniería Metabólica , Pirazinas , TreoninaRESUMEN
The present study aimed to investigate the effect of dietary astaxanthin (Ast) from Phaffia rhodozyma on growth performance, survival, carotenoid content, the activity of antioxidant and immune-related enzymes, intestinal microbiota comparison, and disease resistance against Vibrio parahaemolyticus in Penaeus monodon. Juveniles (average weight 3.15 ± 0.12 g) were fed with six experimental diets supplemented with 0 (Control), 20.5, 41, 61.5, 82, and 102.5 mg/kg of Ast (defined as diet A-D) in triplicate for 56 days. The results indicated that shrimp fed with Ast supplementation significantly (p < 0.05) improved growth performance compared with the control. Furthermore, significantly (p < 0.05) increased survival and decreased feed conversion ratio (FCR) demonstrated the beneficial effects of dietary Ast on enhancing nutrient utilization and ultimately improving the growth and survival of shrimp. Furthermore, shrimp fed with Ast including diet developed a deeper red color than the control, consistent with the significantly (p < 0.05) increased Ast deposition in the shrimp shell. Hemolymph-immunological parameters [aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (AKP)] and hepatopancreatic antioxidant status [total antioxidant capacity (T-AOC), malondialdehyde (MDA), catalase (CAT), and superoxide dismutase (SOD)] were significantly (p < 0.05) affected by dietary Ast supplementation. Dietary increasing Ast levels significantly (p < 0.05) increased shrimp resistance performance to V. parahaemolyticus according to the LT50 results in the current study, which may be caused by increased total carotenoid contents in shrimp tissues from all the Ast-supplemented treatments. Conversely, intestinal microbiota biodiversity and richness were not affected by dietary Ast. The best performances of growth, antioxidant status, immunological response, and carotenoid deposition were observed in diets E and F among all the Ast-supplemented treatments. Overall, all the data suggested that dietary P. rhodozyma Ast played a critical role in improving growth performance, achieving the desired coloration, increasing carotenoid content, and keeping better health status of shrimp. Based on these positive performances, P. rhodozyma Ast could gain the trust of the consumers as a natural source and provide a potential alternative for synthetic Ast using in the Penaeus monodon culture industry.
RESUMEN
Gut microbiota are known to play an important role in health and nutrition of the host and have been attracting an increasing attention. Farming of new lineages of grass carp and crucian carp has been developed rapidly as these species were found to outperform indigenous ones in terms of growth rate and susceptibility to diseases. Despite this rapid development, no studies have addressed the characteristics of their gut microbiota as a potential factor responsible for the improved characteristics. To reveal whether microbiomes of the new lineages are different from indigenous ones, and therefore could be responsible for improved growth features, intestinal microbiota from the new lineages were subjected to high-throughput sequencing. While the phyla Firmicutes, Fusobacteria and Proteobacteria were representing the core bacterial communities that comprised more than 75% in all fish intestinal samples, significant differences were found in the microbial community composition of the new linages versus indigenous fish populations, suggesting the possibility that results in the advantages of enhanced disease resistance and rapid growth for the new fish lineages. Bacterial composition was similar between herbivorous and omnivorous fish. The relative abundance of Bacteroidetes and Actinobacteria was significantly higher in omnivores compared to that of herbivores, whereas Cetobacterium_sp. was abundant in herbivores. We also found that the gut microbiota of freshwater fish in the Dongting lake area was distinct from those of other areas. Network graphs showed the reduced overall connectivity of gut bacteria in indigenous fish, whereas the bacteria of the new fish lineage groups showed hubs with more node degree. A phylogenetic investigation of communities by reconstruction of unobserved states inferred function profile showed several metabolic processes were more active in the new lineages compared to indigenous fish. Our findings suggest that differences in gut bacterial community composition may be an important factor contributing to the rapid growth and high disease resistance of the new fish lineages.
Asunto(s)
Bacterias/clasificación , Bacterias/genética , Carpas/microbiología , Microbioma Gastrointestinal , Animales , Biodiversidad , Carpas/metabolismo , ADN Bacteriano/genética , Agua Dulce , Filogenia , Análisis de Secuencia de ADNRESUMEN
Probiotic-feeding continues to be a promising strategy to control the bacterial pathogens in aquaculture. A new Pediococcus pentosaceus strain (SL001) was isolated from 1000s of soil samples, which exhibited wide antimicrobial spectrum of against fish pathogens, involving Aeromonas hydrophila, Aeromonas veronii, Aeromonas sobria, Edwardsiella tarda, Lactococcus garvieae, and Plesiomonas shigelloide. The challenge test against A. hydrophila showed that the survival rate of SL001-supplemented group was significantly higher than that of control group (P < 0.05). Moreover, SL001 could stably colonize in gut of grass carp and increased mucus-secreting goblet cells and extended intestinal villi could be observed in SL001-supplemented group (P < 0.05). Feeding with SL001 supplemented diet could significantly enhance the growth rate (P < 0.05) and markedly affect gut microbiota structure of grass carps, resulting in reduced potential pathogens and increased potential probiotics. Furthermore, feeding grass carps with SL001 caused the up-regulated expression of insulin-like growth factor (IGF-1 and IGF-2) and down-regulated expression of myostatin (MSTN-1 and MSTN-2) (P < 0.05), which probably also account for the increased growth rate of SL001-fed group. Meanwhile, relative mRNA expression levels of immune-related genes in liver, spleen, and head kidney were analyzed in grass carps after feeding for 30 days with SL001 supplemented diets. In all three immune organs, the expression levels of immunoglobulin M (IgM) and complement 3 (C3) were significantly increased (P < 0.05), whereas the interleukin-8 (IL-8) was down-regulated (P < 0.05). Besides, whole genome sequencing revealed several probiotics properties of SL001, including organic acid synthesis, bacteriocin synthesis (coagulin), superoxide dismutase, and digestive enzymes. In conclusion, P. pentosaceus SL001 which could enhance immunity and promoter growth rate of grass carps, is prospective to be used as a dietary probiotic in freshwater fish aquaculture.
RESUMEN
This study evaluated whether arginine (Arg) supplementation could attenuate gut injury induced by Escherichia coli lipopolysaccharide (LPS) challenge through an anti-inflammatory role in weaned pigs. Pigs were allotted to four treatments including: (1) non-challenged control; (2) LPS-challenged control; (3) LPS+0.5 % Arg; (4) LPS+1.0 % Arg. On day 16, pigs were injected with LPS or sterile saline. At 6 h post-injection, pigs were killed for evaluation of small intestinal morphology and intestinal gene expression. Within 48 h of challenge, 0.5 % Arg alleviated the weight loss induced by LPS challenge (P = 0.025). In all three intestinal segments, 0.5 or 1.0 % Arg mitigated intestinal morphology impairment (e.g. lower villus height and higher crypt depth) induced by LPS challenge (P < 0.05), and alleviated the decrease of crypt cell proliferation and the increase of villus cell apoptosis after LPS challenge (P < 0.01). The 0.5 % Arg prevented the elevation of jejunal IL-6 mRNA abundance (P = 0.082), and jejunal (P = 0.030) and ileal (P = 0.039) TNF-alpha mRNA abundance induced by LPS challenge. The 1.0 % Arg alleviated the elevation of jejunal IL-6 mRNA abundance (P = 0.053) and jejunal TNF-alpha mRNA abundance (P = 0.003) induced by LPS challenge. The 0.5 % Arg increased PPARgamma mRNA abundance in all three intestinal segments (P < 0.10), and 1.0 % Arg increased duodenal PPARgamma mRNA abundance (P = 0.094). These results indicate that Arg supplementation has beneficial effects in alleviating gut mucosal injury induced by LPS challenge. Additionally, it is possible that the protective effects of Arg on the intestine are associated with decreasing the expression of intestinal pro-inflammatory cytokines through activating PPARgamma expression.