Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.349
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Genes Dev ; 34(9-10): 715-729, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32217665

RESUMEN

Covalent chemical modifications of cellular RNAs directly impact all biological processes. However, our mechanistic understanding of the enzymes catalyzing these modifications, their substrates and biological functions, remains vague. Amongst RNA modifications N6-methyladenosine (m6A) is widespread and found in messenger (mRNA), ribosomal (rRNA), and noncoding RNAs. Here, we undertook a systematic screen to uncover new RNA methyltransferases. We demonstrate that the methyltransferase-like 5 (METTL5) protein catalyzes m6A in 18S rRNA at position A1832 We report that absence of Mettl5 in mouse embryonic stem cells (mESCs) results in a decrease in global translation rate, spontaneous loss of pluripotency, and compromised differentiation potential. METTL5-deficient mice are born at non-Mendelian rates and develop morphological and behavioral abnormalities. Importantly, mice lacking METTL5 recapitulate symptoms of patients with DNA variants in METTL5, thereby providing a new mouse disease model. Overall, our biochemical, molecular, and in vivo characterization highlights the importance of m6A in rRNA in stemness, differentiation, development, and diseases.


Asunto(s)
Diferenciación Celular/genética , Regulación del Desarrollo de la Expresión Génica/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , Animales , Ratones , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/enzimología , Mutación , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Biosíntesis de Proteínas/genética , ARN Ribosómico 18S/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(8): e2319364121, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38359296

RESUMEN

Clonal hematopoiesis (CH) represents the clonal expansion of hematopoietic stem cells and their progeny driven by somatic mutations. Accurate risk assessment of CH is critical for disease prevention and clinical decision-making. The size of CH has been showed to associate with higher disease risk, yet, factors influencing the size of CH are unknown. In addition, the characteristics of CH in long-lived individuals are not well documented. Here, we report an in-depth analysis of CH in longevous (≥90 y old) and common (60~89 y old) elderly groups. Utilizing targeted deep sequencing, we found that the development of CH is closely related to age and the expression of aging biomarkers. The longevous elderly group exhibited a significantly higher incidence of CH and significantly higher frequency of TET2 and ASXL1 mutations, suggesting that certain CH could be beneficial to prolong life. Intriguingly, the size of CH neither correlates significantly to age, in the range of 60 to 110 y old, nor to the expression of aging biomarkers. Instead, we identified a strong correlation between large CH size and the number of mutations per individual. These findings provide a risk assessment biomarker for CH and also suggest that the evolution of the CH is influenced by factor(s) in addition to age.


Asunto(s)
Hematopoyesis Clonal , Hematopoyesis , Humanos , Anciano , Hematopoyesis Clonal/genética , Hematopoyesis/genética , Envejecimiento/genética , Mutación , Biomarcadores
3.
Cereb Cortex ; 34(13): 104-111, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38696603

RESUMEN

Autism is characterized by atypical social communication styles. To investigate whether individuals with high autistic traits could still have effective social communication among each other, we compared the behavioral patterns and communication quality within 64 dyads of college students paired with both high, both low, and mixed high-low (HL) autistic traits, with their gender matched. Results revealed that the high-high (HH) autistic dyads exhibited atypical behavioral patterns during conversations, including reduced mutual gaze, communicational turns, and emotional sharing compared with the low-low and/or HL autistic dyads. However, the HH autistic dyads displayed enhanced interpersonal neural synchronization during social communications measured by functional near-infrared spectroscopy, suggesting an effective communication style. Besides, they also provided more positive subjective evaluations of the conversations. These findings highlight the potential for alternative pathways to effectively communicate with the autistic community, contribute to a deeper understanding of how high autistic traits influence social communication dynamics among autistic individuals, and provide important insights for the clinical practices for supporting autistic people.


Asunto(s)
Trastorno Autístico , Comunicación , Espectroscopía Infrarroja Corta , Humanos , Masculino , Femenino , Adulto Joven , Trastorno Autístico/psicología , Trastorno Autístico/fisiopatología , Relaciones Interpersonales , Conducta Social , Interacción Social , Encéfalo/fisiopatología , Encéfalo/fisiología , Adulto , Sincronización Cortical/fisiología , Adolescente
4.
Nucleic Acids Res ; 51(6): 2740-2758, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36864759

RESUMEN

In CRISPR/Cas9 genome editing, the tight and persistent target binding of Cas9 provides an opportunity for efficient genetic and epigenetic modification on genome. In particular, technologies based on catalytically dead Cas9 (dCas9) have been developed to enable genomic regulation and live imaging in a site-specific manner. While post-cleavage target residence of CRISPR/Cas9 could alter the pathway choice in repair of Cas9-induced DNA double strand breaks (DSBs), it is possible that dCas9 residing adjacent to a break may also determine the repair pathway for this DSB, providing an opportunity to control genome editing. Here, we found that loading dCas9 onto a DSB-adjacent site stimulated homology-directed repair (HDR) of this DSB by locally blocking recruitment of classical non-homologous end-joining (c-NHEJ) factors and suppressing c-NHEJ in mammalian cells. We further repurposed dCas9 proximal binding to increase HDR-mediated CRISPR genome editing by up to 4-fold while avoiding exacerbation of off-target effects. This dCas9-based local inhibitor provided a novel strategy of c-NHEJ inhibition in CRISPR genome editing in place of small molecule c-NHEJ inhibitors, which are often used to increase HDR-mediated genome editing but undesirably exacerbate off-target effects.


Asunto(s)
Sistemas CRISPR-Cas , Roturas del ADN de Doble Cadena , Animales , Reparación del ADN por Unión de Extremidades , Reparación del ADN por Recombinación , Edición Génica/métodos , ADN/genética , Reparación del ADN , Mamíferos/genética
5.
Nano Lett ; 24(19): 5920-5928, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38708934

RESUMEN

A significant challenge in direct seawater electrolysis is the rapid deactivation of the cathode due to the large scaling of Mg(OH)2. Herein, we synthesized a Pt-coated highly disordered NiCu alloy (Pt-NiCu alloy) electrode with superior solidophobic behavior, enabling stable hydrogen generation (100 mA cm-2, >1000 h durability) and simultaneous production of Mg(OH)2 (>99.0% purity) in electrolyte enriched with Mg2+ and Ca2+. The unconventional solidophobic property primarily stems from the high surface energy of the NiCu alloy substrate, which facilitates the adsorption of surface water and thereby compels the bulk formation of Mg(OH)2 via homogeneous nucleation. The discovery of this solidophobic electrode will revolutionarily simplify the existing techniques for seawater electrolysis and increase the economic viability for seawater electrolysis.

6.
J Cell Mol Med ; 28(1): e18007, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37890842

RESUMEN

Microglial HO-1 regulates iron metabolism in the brain. Intracerebral haemorrhage (ICH) shares features of ferroptosis and necroptosis; hemin is an oxidized product of haemoglobin from lysed red blood cells, leading to secondary injury. However, little is known about the underlying molecular mechanisms attributable to secondary injury by hemin or ICH. In this study, we first show that FoxO3a was highly co-located with neurons and microglia but not astrocytes area of ICH model mice. Hemin activated FoxO3a/ATG-mediated autophagy and HO-1 signalling resulting in ferroptosis in vitro and in a mice model of brain haemorrhage. Accordingly, autophagy inhibitor Baf-A1 or HO-1 inhibitor ZnPP protected against hemin-induced ferroptosis. Hemin promoted ferroptosis of neuronal cells via FoxO3a/ATG-mediated autophagy and HO-1 signalling pathway. Knock-down of FoxO3a inhibited autophagy and prevented hemin-induced ferroptosis dependent of HO-1 signalling. We first showed that hemin stimulated microglial FoxO3a/HO-1 expression and enhanced the microglial polarisation towards the M1 phenotype, while knockdown of microglial FoxO3a inhibited pro-inflammatory cytokine production in microglia. Furthermore, the microglia activation in the striatum showed significant along with a high expression level of FoxO3a in the ICH mice. We found that conditional knockout of FoxO3a in microglia in mice alleviated neurological deficits and microglia activation as well as ferroptosis-induced striatum injury in the autologous blood-induced ICH model. We demonstrate, for the first time, that FoxO3a/ATG-mediated autophagy and HO-1 play an important role in microglial activation and ferroptosis-induced striatum injury of ICH, identifying a new therapeutic avenue for the treatment of ICH.


Asunto(s)
Lesiones Encefálicas , Ferroptosis , Ratones , Animales , Microglía/metabolismo , Hemo-Oxigenasa 1/metabolismo , Hemina , Hemorragia Cerebral/complicaciones , Autofagia , Lesiones Encefálicas/metabolismo
7.
Br J Cancer ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877108

RESUMEN

BACKGROUND: Targeting DNA damage repair factors, such as DNA-dependent protein kinase catalytic subunit (DNA-PKcs), may offer an opportunity for effective treatment of multiple myeloma (MM). In combination with DNA damage-inducing agents, this strategy has been shown to improve chemotherapies partially via activation of cGAS-STING pathway by an elevated level of cytosolic DNA. However, as cGAS is primarily sequestered by chromatin in the nucleus, it remains unclear how cGAS is released from chromatin and translocated into the cytoplasm upon DNA damage, leading to cGAS-STING activation. METHODS: We examined the role of DNA-PKcs inhibition on cGAS-STING-mediated MM chemosensitivity by performing mass spectrometry and mechanism study. RESULTS: Here, we found DNA-PKcs inhibition potentiated DNA damage-inducing agent doxorubicin-induced anti-MM effect by activating cGAS-STING signaling. The cGAS-STING activation in MM cells caused cell death partly via IRF3-NOXA-BAK axis and induced M1 polarization of macrophages. Moreover, this activation was not caused by defective classical non-homologous end joining (c-NHEJ). Instead, upon DNA damage induced by doxorubicin, inhibition of DNA-PKcs promoted cGAS release from cytoplasmic chromatin fragments and increased the amount of cytosolic cGAS and DNA, activating cGAS-STING. CONCLUSIONS: Inhibition of DNA-PKcs could improve the efficacy of doxorubicin in treatment of MM by de-sequestrating cGAS in damaged chromatin.

8.
Biochem Biophys Res Commun ; 692: 149359, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38071893

RESUMEN

BACKGROUND: Ferroptosis plays an important role in acute kidney injury (AKI), but the specific regulatory mechanism of ferroptosis in AKI remains unclear. This study is expected to analyze ferroptosis-related genes (FRGs) in AKI and explore their underlying mechanisms. RESULTS: A total of 479 differentially expressed genes (DEGs), including 196 up-regulated genes and 283 down-regulated genes were identified in the AKI chip GSE30718. 341 FRGs were obtained from the Genecard, OMIM and NCBI database. Totally 11 ferroptosis-related DEGs in AKI were found, in which 7 genes (CD44, TIGAR, RB1, LCN2, JUN, ARNTL, ACSL4) were up-regulated and 4 genes (FZD7, EP300, FOXC1, DLST) were down-regulated. Three core genes (FZD7, JUN, EP300) were obtained by PPI and KEGG analysis, among which the function of FZD7 in AKI is unclear. The WGCNA analysis found that FZD7 belongs to a module that was negatively correlated with AKI. Further basic experiments confirmed that FZD7 is down-regulated in mouse model of ischemia-reperfusion-AKI and cellular model of hypoxia-reoxygenation(H/R). In addition, knockdown of FZD7 could further aggravate the down-regulation of cell viability induced by H/R and Erastin, while overexpression of FZD7 can rescue its down-regulation to some extent. Furthermore, we verified that knockdown of FZD7 decreased the expression of GPX4 and overexpression of FZD7 increased the expression of GPX4, suggesting that FZD7 may inhibit ferroptosis by regulating the expression of GPX4 and plays a vital role in the onset and development of AKI. CONCLUSIONS: This article revealed the anti-ferroptosis effect of FZD7 in acute kidney injury through bioinformatics analysis and experimental validation, suggesting that FZD7 is a promising target for AKI and provided more evidence about the vital role of ferroptosis in AKI.


Asunto(s)
Lesión Renal Aguda , Ferroptosis , Animales , Ratones , Lesión Renal Aguda/genética , Proteínas Reguladoras de la Apoptosis , Supervivencia Celular , Biología Computacional , Bases de Datos Factuales , Ferroptosis/genética , Monoéster Fosfórico Hidrolasas
9.
J Pharmacol Exp Ther ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849141

RESUMEN

Triple-negative breast cancer (TNBC) is characterized by high mortality rates primarily due to its propensity for metastasis. Addressing this challenge necessitates the development of effective antimetastatic therapies. This study aimed to identify natural compounds with potential antimetastatic properties mainly based on the high-throughput phenotypic screening system. This system, utilizing luciferase reporter gene assays combined with scratch wound assays, evaluates compounds based on their influence on the epithelial-mesenchymal transition (EMT) marker E-cadherin. Through this approach, aurovertin B (AVB) was revealed to have significant antimetastatic capability. Notably, AVB exhibited substantial metastasis suppression in many TNBC cell lines, including MDA-MB-231, HCC1937 and 4T1. Also, its remarkable antimetastatic activity was demonstrated in vivo via the orthotopic breast cancer mouse model. Further exploration revealed a pronounced association between AVB-induced upregulation of DUSP1 (dual-specificity phosphatase 1) and its inhibitory effect on TNBC metastasis. Additionally, microarray analysis conducted to elucidate the underlying mechanism of the AVB-DUSP1 interaction identified ATF3 (activating transcription factor 3) as a critical transcription factor instrumental in DUSP1 transcriptional activation. This discovery, coupled with observations of enhanced ATF3-DUSP1 expression and consequent reduction in TNBC metastatic foci in response to AVB, provides novel insights into the molecular mechanisms driving metastasis in TNBC. Significance Statement We construct a high-throughput phenotypic screening system utilizing EMT marker E-cadherin promoter luciferase reporter gene combined with scratch wound assays. Aurovertin B was revealed to possess significant antimetastatic activity through this approach, which was further demonstrated via in vivo and in vitro experiments. The discovery of the regulatory role of the ATF3-DUSP1 pathway enriches our understanding of TNBC metastasis mechanism and suggests the potential of ATF3 and DUSP1 as biomarkers for diagnosing TNBC metastasis.

10.
J Exp Bot ; 75(5): 1314-1330, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38069660

RESUMEN

Sphingolipids are membrane lipids and play critical roles in signal transduction. Ceramides are central components of sphingolipid metabolism that are involved in cell death. However, the mechanism of ceramides regulating cell death in plants remains unclear. Here, we found that ceramides accumulated in mitochondria of accelerated cell death 5 mutant (acd5), and expression of mitochondrion-localized ceramide kinase (ACD5) suppressed mitochondrial ceramide accumulation and the acd5 cell death phenotype. Using immuno-electron microscopy, we observed hyperaccumulation of ceramides in acer acd5 double mutants, which are characterized by mutations in both ACER (alkaline ceramidase) and ACD5 genes. The results confirmed that plants with specific ceramide accumulation exhibited localization of ceramides to mitochondria, resulting in an increase in mitochondrial reactive oxygen species production. Interestingly, when compared with the wild type, autophagy-deficient mutants showed stronger resistance to ceramide-induced cell death. Lipid profiling analysis demonstrated that plants with ceramide accumulation exhibited a significant increase in phosphatidylethanolamine levels. Furthermore, exogenous ceramide treatment or endogenous ceramide accumulation induces autophagy. When exposed to exogenous ceramides, an increase in the level of the autophagy-specific ubiquitin-like protein, ATG8e, associated with mitochondria, where it directly bound to ceramides. Taken together, we propose that the accumulation of ceramides in mitochondria can induce cell death by regulating autophagy.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ceramidas/metabolismo , Ceramidas/farmacología , Arabidopsis/metabolismo , Mitocondrias/metabolismo , Autofagia , Muerte Celular , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
11.
Microb Pathog ; 193: 106759, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38906494

RESUMEN

Streptococcus suis is one of the major pathogens of pigs circulating worldwide, and the development of vaccines will help to effectively control streptococcosis in swine. In this study, we evaluated the potential of three membrane associated proteins, histidine kinase (HK), glycosyltransferase family 2 (Gtf-2) and phosphate binding protein (PsbP) of S. suis as subunit vaccines. Bioinformatics analysis shows that protein ABC is highly conserved in S. suis. To verify the protective effects of these proteins in animal models, recombinant protein HK, Gtf-2 and PsbP were used to immunize BALB/c mice separately. The results showed that these proteins immunization in mice can effectively induce strong humoral immune responses, protect mice from cytokine storms caused by S. suis infection, and have a significant protective effect against lethal doses of S. suis infection. Furthermore, antibodies with opsonic activity exist in the recombinant proteins antiserum to assist phagocytic cells in killing S. suis. Overall, these results indicated that these recombinant proteins all elicit good immune protective effect against S. suis infection and can be represent promising candidate antigens for subunit vaccines against S. suis.

12.
Vet Res ; 55(1): 80, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886823

RESUMEN

Bacteria utilize intercellular communication to orchestrate essential cellular processes, adapt to environmental changes, develop antibiotic tolerance, and enhance virulence. This communication, known as quorum sensing (QS), is mediated by the exchange of small signalling molecules called autoinducers. AI-2 QS, regulated by the metabolic enzyme LuxS (S-ribosylhomocysteine lyase), acts as a universal intercellular communication mechanism across gram-positive and gram-negative bacteria and is crucial for diverse bacterial processes. In this study, we demonstrated that in Streptococcus suis (S. suis), a notable zoonotic pathogen, AI-2 QS enhances galactose utilization, upregulates the Leloir pathway for capsular polysaccharide (CPS) precursor production, and boosts CPS synthesis, leading to increased resistance to macrophage phagocytosis. Additionally, our molecular docking and dynamics simulations suggest that, similar to S. pneumoniae, FruA, a fructose-specific phosphoenolpyruvate phosphotransferase system prevalent in gram-positive pathogens, may also function as an AI-2 membrane surface receptor in S. suis. In conclusion, our study demonstrated the significance of AI-2 in the synthesis of galactose metabolism-dependent CPS in S. suis. Additionally, we conducted a preliminary analysis of the potential role of FruA as a membrane surface receptor for S. suis AI-2.


Asunto(s)
Galactosa , Percepción de Quorum , Streptococcus suis , Streptococcus suis/fisiología , Galactosa/metabolismo , Percepción de Quorum/fisiología , Virulencia , Animales , Cápsulas Bacterianas/metabolismo , Lactonas/metabolismo , Infecciones Estreptocócicas/veterinaria , Infecciones Estreptocócicas/microbiología , Infecciones Estreptocócicas/inmunología , Homoserina/análogos & derivados , Homoserina/metabolismo , Polisacáridos Bacterianos/metabolismo
13.
Int J Med Sci ; 21(6): 1079-1090, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38774751

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a rare, chronic and progressively worsening lung disease that poses a significant threat to patient prognosis, with a mortality rate exceeding that of some common malignancies. Effective methods for early diagnosis and treatment remain for this condition are elusive. In our study, we used the GEO database to access second-generation sequencing data and associated clinical information from IPF patients. By utilizing bioinformatics techniques, we identified crucial disease-related genes and their biological functions, and characterized their expression patterns. Furthermore, we mapped out the immune landscape of IPF, which revealed potential roles for novel kinase 1 and CD8+T cells in disease progression and outcome. These findings can aid the development of new strategies for the clinical diagnosis and treatment of IPF.


Asunto(s)
Linfocitos T CD8-positivos , Fibrosis Pulmonar Idiopática , Humanos , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/inmunología , Fibrosis Pulmonar Idiopática/patología , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Linfocitos T CD8-positivos/inmunología , Biología Computacional , Progresión de la Enfermedad , Pronóstico
14.
J Organomet Chem ; 10042024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38076277

RESUMEN

Organometallic iridium complexes with two cyclometalated ligands (CN) and one bis-oxazoline derived ancillary ligand (L^X), i.e. (CN)2Ir(L^X), are reported. The CN ligands are 1-phenylpyrazoline (ppz), 2-(4,6-difluorophenyl)pyridine (F2ppy), 2-phenylpyridine (ppy), 1-phenylisoquinoline (piq). The box ligand is (4S)-(+)-phenyl-α-[(4S)-phenyloxazolidin-2-ylidene]-2-oxazoline-2-acetonitrile. The emission of these complexes span across the visible and into the near-ultraviolet region of the electromagnetic spectrum with moderate to high photoluminescence quantum yields (ΦPL = 0.45-1.0). These complexes were found to emit from a metal-ligand to ligand charge transfer (ML'LCT) state and have lifetimes (1.3-2.1 µs), radiative rates (105 s-1), and nonradiative rates (104-105 s-1) comparable to state-of-the-art iridium emitters. The (ppy)2Ir(BOX-CN) complexes were resolved into the Δ- and Λ- diastereomers using differences in their solubility and additionally characterized by x-ray crystallography, stability, and chiroptic studies. The high ΦPL of these isomers results in the best to date brightness for circularly polarized luminescence (CPL) from iridium complexes (7.0 M-1 cm-1), with dissymmetry factors of -0.57 × 10-3 and +1.9 × 10-3 for 3Δ and 3Λ, respectively. The significant difference in CPL magnitude between 3Δ and 3Λ likely arises from interligand interactions (edge-to-face arrangement versus strong π-π interaction) for the pendant phenyl ring of the BOX-CN ligand which differ for the two isomers.

15.
BMC Health Serv Res ; 24(1): 23, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38178099

RESUMEN

OBJECTIVE: The outbreak of the COVID-19 pandemic has drawn attention from all sectors of society to the level of public health services. This study aims to investigate the level of public health service supply in the four major regions of Guangdong Province, providing a basis for optimizing health resource allocation. METHODS: This article uses the entropy method and panel data of 21 prefecture-level cities in Guangdong Province from 2005 to 2021 to construct the evaluation index system of public health service supply and calculate its supply index. On this basis, the standard deviation ellipse method, kernel density estimation, and Markov chain are used to analyze the spatiotemporal evolution trend of the public health service supply level in Guangdong Province. The Dagum Gini coefficient and panel regression model are further used to analyze the relative differences and the key influencing factors of difference formation. Finally, the threshold effect model is used to explore the action mechanism of the key factors. RESULTS: Overall, the level of public health service supply in Guangdong Province is on an upward trend. Among them, polarization and gradient effects are observed in the Pearl River Delta and Eastern Guangdong regions; the balance of public health service supply in Western Guangdong and Northern Mountainous areas has improved. During the observation period, the level of public health services in Guangdong Province shifted towards a higher level with a smaller probability of leapfrogging transition, and regions with a high level of supply demonstrated a positive spillover effect. The overall difference, intra-regional difference and inter-regional difference in the level of public health service supply in Guangdong Province during the observation period showed different evolutionary trends, and spatial differences still exist. These differences are more significantly positively affected by factors such as the level of regional economic development, the degree of fiscal decentralization, and the urbanization rate. Under different economic development threshold values, the degree of fiscal decentralization and urbanization rate both have a double threshold effect on the role of public health service supply level. CONCLUSION: The overall level of public health service supply in Guangdong Province has improved, but spatial differences still exist. Key factors influencing these differences include the level of regional economic development, the degree of fiscal decentralization, and the urbanization rate, all of which exhibit threshold effects. It is suggested that, in view of the actual situation of each region, efforts should be made to build and maintain their own advantages, enhance the spatial linkage of public health service supply, and consider the threshold effects of key factors in order to optimize the allocation of health resources.


Asunto(s)
Pandemias , Urbanización , Humanos , China/epidemiología , Ciudades , Servicios de Salud
16.
Clin Exp Hypertens ; 46(1): 2304023, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38346228

RESUMEN

OBJECTIVES: The objective was to utilize a smartwatch sphygmomanometer to predict new-onset hypertension within a short-term follow-up among individuals with high-normal blood pressure (HNBP). METHODS: This study consisted of 3180 participants in the training set and 1000 participants in the validation set. Participants underwent both ambulatory blood pressure monitoring (ABPM) and home blood pressure monitoring (HBPM) using a smartwatch sphygmomanometer. Multivariable Cox regressions were used to analyze cumulative events. A nomogram was constructed to predict new-onset hypertension. Discrimination and calibration were assessed using the C-index and calibration curve, respectively. RESULTS: Among the 3180 individuals with HNBP in the training set, 693 (21.8%) developed new-onset hypertension within a 6-month period. The nomogram for predicting new-onset hypertension had a C-index of 0.854 (95% CI, 0.843-0.867). The calibration curve demonstrated good agreement between the nomogram's predicted probabilities and actual observations for short-term new-onset hypertension. In the validate dataset, during the 6-month follow-up, the nomogram had a good C-index of 0.917 (95% CI, 0.904-0.930) and a good calibration curve. As the score increased, the risk of new-onset hypertension significantly increased, with an HR of 8.415 (95% CI: 5.153-13.744, p = .000) for the middle-score vs. low-score groups and 86.824 (95% CI: 55.071-136.885, p = .000) for the high-score vs. low-score group. CONCLUSIONS: This study provides evidence for the use of smartwatch sphygmomanometer to monitor blood pressure in individuals at high risk of developing new-onset hypertension in the near future. TRIAL REGISTRATION: ChiCTR2200057354.


Asunto(s)
Monitoreo Ambulatorio de la Presión Arterial , Hipertensión , Humanos , Presión Sanguínea/fisiología , Estudios de Cohortes , Hipertensión/diagnóstico , Hipertensión/etiología , Esfigmomanometros , Nomogramas
17.
J Nurs Scholarsh ; 56(4): 585-598, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38691056

RESUMEN

BACKGROUND: Cancer screening is a pivotal method for reducing mortality from disease, but the screening coverage is still lower than expected. Telehealth interventions demonstrated significant benefits in cancer care, yet there is currently no consensus on their impact on facilitating cancer screening or on the most effective remote technology. DESIGN: A network meta-analysis was conducted to detect the impact of telehealth interventions on cancer screening and to identify the most effective teletechnologies. METHODS: Six English databases were searched from inception until July 2023 to yield relevant randomized controlled trials (RCTs). Two individual authors completed the literature selection, data extraction, and methodological evaluations using the Cochrane Risk of Bias tool. Traditional pairwise analysis and network meta-analysis were performed to identify the overall effects and compare different teletechnologies. RESULTS: Thirty-four eligible RCTs involving 131,644 participants were enrolled. Overall, telehealth interventions showed statistically significant effects on the improvement of cancer screening. Subgroup analyses revealed that telehealth interventions were most effective for breast and cervical cancer screening, and rural populations also experienced benefits, but there was no improvement in screening for older adults. The network meta-analysis indicated that mobile applications, video plus telephone, and text message plus telephone were associated with more obvious improvements in screening than other teletechnologies. CONCLUSION: Our study identified that telehealth interventions were effective for the completion of cancer screening and clarified the exact impact of telehealth on different cancer types, ages, and rural populations. Mobile applications, video plus telephone, and text message plus telephone are the three forms of teletechnologies most likely to improve cancer screening. More well-designed RCTs involving direct comparisons of different teletechnologies are needed in the future. CLINICAL RELEVANCE: Telehealth interventions should be encouraged to facilitate cancer screening, and the selection of the optimal teletechnology based on the characteristics of the population is also necessary.


Asunto(s)
Detección Precoz del Cáncer , Metaanálisis en Red , Ensayos Clínicos Controlados Aleatorios como Asunto , Telemedicina , Humanos , Detección Precoz del Cáncer/métodos , Detección Precoz del Cáncer/estadística & datos numéricos , Tamizaje Masivo/estadística & datos numéricos , Tamizaje Masivo/métodos , Neoplasias/diagnóstico
18.
Zhongguo Yi Liao Qi Xie Za Zhi ; 48(3): 352-354, 2024 May 30.
Artículo en Zh | MEDLINE | ID: mdl-38863108

RESUMEN

The pre-research of medical device standards is of great significance for the enactment and amendment of standards. This study discusses four aspects and explores how to promote more scientific and reasonable pre-research. Based on the pre-research practice of medical device standards project, this study puts forward relevant work ideas and suggestions.


Asunto(s)
Equipos y Suministros , Equipos y Suministros/normas
19.
J Mol Cell Cardiol ; 174: 115-132, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36509022

RESUMEN

RATIONAL: Excessive mitochondrial fission is considered key process involved in myocardial ischemia/reperfusion (I/R) injury. However, the upstream mechanism remains largely unclear. Decreased level of Kruppel Like Factor 4 (KLF4) has been implicated in the pathogenesis of mitochondrial dysfunction and heart's adaption to stress. However, the role of Klf4 in I/R process is not fully elucidated. This study aims to investigate how Klf4 regulates mitochondrial dynamics and further clarify its underlying mechanism during cardiac I/R injury. METHODS: Loss-of-function and gain-of-function strategies were applied to investigate the role of Klf4 in cardiac I/R injury via genetic ablation or intra-myocardial adenovirus injection. Mitochondrial dynamics was analyzed by confocal microscopy in vitro and transmission electron microscopy in vivo. Chromatin immunoprecipitation and luciferase reporter assay were performed to explore the underlying mechanisms. RESULTS: KLF4 was downregulated in I/R heart. Cardiac-specific Klf4 knockout significantly exacerbated cardiac dysfunction in I/R mice. Mechanistically, Klf4 deficiency aggravated mitochondrial apoptosis, reduced ATP generation and boosted ROS overproduction via enhancing DRP1-dependent mitochondrial fission. ROCK1 was identified as a kinase regulating DRP1 activity at Ser616. Klf4 deficiency upregulated the expression of ROCK1 at transcriptional level, thus increasing S616-DRP1-mediated mitochondrial fission during I/R. Finally, reconstitution of Klf4 inhibited mitochondrial fission, restored mitochondrial function and alleviated I/R injury. CONCLUSION: Our study provides the first evidence that Klf4 deficiency exacerbates myocardial I/R injury through regulating ROCK1 expression at transcriptional level to induce DRP1-mediated mitochondrial fission. Targeting mitochondrial dynamics by restoring Klf4 might be potentially cardio-protective strategies attenuating I/R injury.


Asunto(s)
Daño por Reperfusión Miocárdica , Animales , Ratones , Apoptosis/genética , Dinaminas/metabolismo , Corazón , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Daño por Reperfusión Miocárdica/metabolismo , Miocardio/metabolismo
20.
J Am Chem Soc ; 145(34): 19086-19097, 2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37596995

RESUMEN

Metal oxide nanozymes have emerged as the most efficient and promising candidates to mimic antioxidant enzymes for treatment of oxidative stress-mediated pathophysiological disorders, but the current effectiveness is unsatisfactory due to insufficient catalytic performance. Here, we report for the first time an intrinsic strain-mediated ultrathin ceria nanoantioxidant. Surface strain in ceria with variable thicknesses and coordinatively unsaturated Ce sites was investigated by theoretical calculation analysis and then was validated by preparing ∼1.2 nm ultrathin nanoplates with ∼3.0% tensile strain in plane/∼10.0% tensile strain out of plane. Compared with nanocubes, surface strain in ultrathin nanoplates could enhance the covalency of the Ce-O bond, leading to increasing superoxide dismutase (SOD)-mimetic activity by ∼2.6-fold (1533 U/mg, in close proximity to that of natural SOD) and total antioxidant activity by ∼2.5-fold. As a proof of concept, intrinsic strain-mediated ultrathin ceria nanoplates could boost antioxidation for improved ischemic stroke treatment in vivo, significantly better than edaravone, a commonly used clinical drug.


Asunto(s)
Antioxidantes , Accidente Cerebrovascular Isquémico , Humanos , Antioxidantes/farmacología , Catálisis , Óxidos , Superóxido Dismutasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA