Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 588(7836): 151-156, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33149305

RESUMEN

Lymphotoxin ß-receptor (LTßR) signalling promotes lymphoid neogenesis and the development of tertiary lymphoid structures1,2, which are associated with severe chronic inflammatory diseases that span several organ systems3-6. How LTßR signalling drives chronic tissue damage particularly in the lung, the mechanism(s) that regulate this process, and whether LTßR blockade might be of therapeutic value have remained unclear. Here we demonstrate increased expression of LTßR ligands in adaptive and innate immune cells, enhanced non-canonical NF-κB signalling, and enriched LTßR target gene expression in lung epithelial cells from patients with smoking-associated chronic obstructive pulmonary disease (COPD) and from mice chronically exposed to cigarette smoke. Therapeutic inhibition of LTßR signalling in young and aged mice disrupted smoking-related inducible bronchus-associated lymphoid tissue, induced regeneration of lung tissue, and reverted airway fibrosis and systemic muscle wasting. Mechanistically, blockade of LTßR signalling dampened epithelial non-canonical activation of NF-κB, reduced TGFß signalling in airways, and induced regeneration by preventing epithelial cell death and activating WNT/ß-catenin signalling in alveolar epithelial progenitor cells. These findings suggest that inhibition of LTßR signalling represents a viable therapeutic option that combines prevention of tertiary lymphoid structures1 and inhibition of apoptosis with tissue-regenerative strategies.


Asunto(s)
Pulmón/efectos de los fármacos , Pulmón/fisiología , Receptor beta de Linfotoxina/antagonistas & inhibidores , Regeneración/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proteínas Wnt/agonistas , Inmunidad Adaptativa , Envejecimiento/metabolismo , Células Epiteliales Alveolares/citología , Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/metabolismo , Animales , Apoptosis/efectos de los fármacos , Enfisema/metabolismo , Femenino , Humanos , Inmunidad Innata , Pulmón/metabolismo , Receptor beta de Linfotoxina/metabolismo , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Humo/efectos adversos , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
2.
Am J Respir Crit Care Med ; 209(6): 683-692, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38055196

RESUMEN

Rationale: Small airway disease is an important pathophysiological feature of chronic obstructive pulmonary disease (COPD). Recently, "pre-COPD" has been put forward as a potential precursor stage of COPD that is defined by abnormal spirometry findings or significant emphysema on computed tomography (CT) in the absence of airflow obstruction. Objective: To determine the degree and nature of (small) airway disease in pre-COPD using microCT in a cohort of explant lobes/lungs. Methods: We collected whole lungs/lung lobes from patients with emphysematous pre-COPD (n = 10); Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage I (n = 6), II (n = 6), and III/IV (n = 7) COPD; and controls (n = 10), which were analyzed using CT and microCT. The degree of emphysema and the number and morphology of small airways were compared between groups, and further correlations were investigated with physiologic measures. Airway and parenchymal pathology was also validated with histopathology. Measurements and Main Results: The numbers of transitional bronchioles and terminal bronchioles per milliliter of lung were significantly lower in pre-COPD and GOLD stages I, II, and III/IV COPD compared with controls. In addition, the number of alveolar attachments of the transitional bronchioles and terminal bronchioles was also lower in pre-COPD and all COPD groups compared with controls. We did not find any differences between the pre-COPD and COPD groups in CT or microCT measures. The percentage of emphysema on CT showed the strongest correlation with the number of small airways in the COPD groups. Histopathology showed an increase in the mean chord length and a decrease in alveolar surface density in pre-COPD and all GOLD COPD stages compared with controls. Conclusions: Lungs of patients with emphysematous pre-COPD already show fewer small airways and airway remodeling even in the absence of physiologic airway obstruction.


Asunto(s)
Asma , Enfisema , Enfermedad Pulmonar Obstructiva Crónica , Enfisema Pulmonar , Humanos , Estudios Transversales , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Enfermedad Pulmonar Obstructiva Crónica/patología , Enfisema Pulmonar/complicaciones , Enfisema Pulmonar/diagnóstico por imagen , Enfisema Pulmonar/patología , Pulmón , Asma/patología , Microtomografía por Rayos X
3.
Eur Respir J ; 63(2)2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38212077

RESUMEN

BACKGROUND: Fibroblast-to-myofibroblast conversion is a major driver of tissue remodelling in organ fibrosis. Distinct lineages of fibroblasts support homeostatic tissue niche functions, yet their specific activation states and phenotypic trajectories during injury and repair have remained unclear. METHODS: We combined spatial transcriptomics, multiplexed immunostainings, longitudinal single-cell RNA-sequencing and genetic lineage tracing to study fibroblast fates during mouse lung regeneration. Our findings were validated in idiopathic pulmonary fibrosis patient tissues in situ as well as in cell differentiation and invasion assays using patient lung fibroblasts. Cell differentiation and invasion assays established a function of SFRP1 in regulating human lung fibroblast invasion in response to transforming growth factor (TGF)ß1. MEASUREMENTS AND MAIN RESULTS: We discovered a transitional fibroblast state characterised by high Sfrp1 expression, derived from both Tcf21-Cre lineage positive and negative cells. Sfrp1 + cells appeared early after injury in peribronchiolar, adventitial and alveolar locations and preceded the emergence of myofibroblasts. We identified lineage-specific paracrine signals and inferred converging transcriptional trajectories towards Sfrp1 + transitional fibroblasts and Cthrc1 + myofibroblasts. TGFß1 downregulated SFRP1 in noninvasive transitional cells and induced their switch to an invasive CTHRC1+ myofibroblast identity. Finally, using loss-of-function studies we showed that SFRP1 modulates TGFß1-induced fibroblast invasion and RHOA pathway activity. CONCLUSIONS: Our study reveals the convergence of spatially and transcriptionally distinct fibroblast lineages into transcriptionally uniform myofibroblasts and identifies SFRP1 as a modulator of TGFß1-driven fibroblast phenotypes in fibrogenesis. These findings are relevant in the context of therapeutic interventions that aim at limiting or reversing fibroblast foci formation.


Asunto(s)
Fibrosis Pulmonar Idiopática , Miofibroblastos , Ratones , Animales , Humanos , Miofibroblastos/metabolismo , Fibroblastos/metabolismo , Pulmón/metabolismo , Fibrosis Pulmonar Idiopática/metabolismo , Diferenciación Celular , Factor de Crecimiento Transformador beta1/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo
4.
Eur Respir J ; 62(4)2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37652569

RESUMEN

COPD is a devastating respiratory condition that manifests via persistent inflammation, emphysema development and small airway remodelling. Lung regeneration is defined as the ability of the lung to repair itself after injury by the proliferation and differentiation of progenitor cell populations, and becomes impaired in the COPD lung as a consequence of cell intrinsic epithelial stem cell defects and signals from the micro-environment. Although the loss of structural integrity and lung regenerative capacity are critical for disease progression, our understanding of the cellular players and molecular pathways that hamper regeneration in COPD remains limited. Intriguingly, despite being a key driver of COPD pathogenesis, the role of the immune system in regulating lung regenerative mechanisms is understudied. In this review, we summarise recent evidence on the contribution of immune cells to lung injury and regeneration. We focus on four main axes: 1) the mechanisms via which myeloid cells cause alveolar degradation; 2) the formation of tertiary lymphoid structures and the production of autoreactive antibodies; 3) the consequences of inefficient apoptotic cell removal; and 4) the effects of innate and adaptive immune cell signalling on alveolar epithelial proliferation and differentiation. We finally provide insight on how recent technological advances in omics technologies and human ex vivo lung models can delineate immune cell-epithelium cross-talk and expedite precision pro-regenerative approaches toward reprogramming the alveolar immune niche to treat COPD.

5.
Eur Respir J ; 61(4)2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36549711

RESUMEN

BACKGROUND: Receptor-interacting protein kinase 1 (RIPK1) is a key mediator of regulated cell death (including apoptosis and necroptosis) and inflammation, both drivers of COPD pathogenesis. We aimed to define the contribution of RIPK1 kinase-dependent cell death and inflammation in the pathogenesis of COPD. METHODS: We assessed RIPK1 expression in single-cell RNA sequencing (RNA-seq) data from human and mouse lungs, and validated RIPK1 levels in lung tissue of COPD patients via immunohistochemistry. Next, we assessed the consequences of genetic and pharmacological inhibition of RIPK1 kinase activity in experimental COPD, using Ripk1 S25D/S25D kinase-deficient mice and the RIPK1 kinase inhibitor GSK'547. RESULTS: RIPK1 expression increased in alveolar type 1 (AT1), AT2, ciliated and neuroendocrine cells in human COPD. RIPK1 protein levels were significantly increased in airway epithelium of COPD patients compared with never-smokers and smokers without airflow limitation. In mice, exposure to cigarette smoke (CS) increased Ripk1 expression similarly in AT2 cells, and further in alveolar macrophages and T-cells. Genetic and/or pharmacological inhibition of RIPK1 kinase activity significantly attenuated airway inflammation upon acute and subacute CS exposure, as well as airway remodelling, emphysema, and apoptotic and necroptotic cell death upon chronic CS exposure. Similarly, pharmacological RIPK1 kinase inhibition significantly attenuated elastase-induced emphysema and lung function decline. Finally, RNA-seq on lung tissue of CS-exposed mice revealed downregulation of cell death and inflammatory pathways upon pharmacological RIPK1 kinase inhibition. CONCLUSIONS: RIPK1 kinase inhibition is protective in experimental models of COPD and may represent a novel promising therapeutic approach.


Asunto(s)
Enfisema , Enfermedad Pulmonar Obstructiva Crónica , Enfisema Pulmonar , Humanos , Ratones , Animales , Pulmón , Muerte Celular , Inflamación/metabolismo , Ratones Endogámicos C57BL , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
6.
Am J Physiol Regul Integr Comp Physiol ; 324(1): R109-R119, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36409022

RESUMEN

The fundamental body functions that determine maximal O2 uptake (V̇o2max) have not been studied in Aqp5-/- mice (aquaporin 5, AQP5). We measured V̇o2max to globally assess these functions and then investigated why it was found altered in Aqp5-/- mice. V̇o2max was measured by the Helox technique, which elicits maximal metabolic rate by intense cold exposure of the animals. We found V̇o2max reduced in Aqp5-/- mice by 20%-30% compared with wild-type (WT) mice. As AQP5 has been implicated to act as a membrane channel for respiratory gases, we studied whether this is caused by the known lack of AQP5 in the alveolar epithelial membranes of Aqp5-/- mice. Lung function parameters as well as arterial O2 saturation were normal and identical between Aqp5-/- and WT mice, indicating that AQP5 does not contribute to pulmonary O2 exchange. The cause for the decreased V̇o2max thus might be found in decreased O2 consumption of an intensely O2-consuming peripheral organ such as activated brown adipose tissue (BAT). We found indeed that absence of AQP5 greatly reduces the amount of interscapular BAT formed in response to 4 wk of cold exposure, from 63% in WT to 25% in Aqp5-/- animals. We conclude that lack of AQP5 does not affect pulmonary O2 exchange, but greatly inhibits transformation of white to brown adipose tissue. As under cold exposure, BAT is a major source of the animals' heat production, reduction of BAT likely causes the decrease in V̇o2max under this condition.


Asunto(s)
Tejido Adiposo Pardo , Intercambio Gaseoso Pulmonar , Animales , Ratones , Tejido Adiposo Pardo/metabolismo , Termogénesis/fisiología , Pulmón , Consumo de Oxígeno , Frío
8.
Eur Respir J ; 57(5)2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33303550

RESUMEN

Bronchiolitis obliterans syndrome (BOS) is a major complication after lung transplantation (LTx). BOS is characterised by massive peribronchial fibrosis, leading to air trapping-induced pulmonary dysfunction. Cathepsin B, a lysosomal cysteine protease, has been shown to enforce fibrotic pathways in several diseases. However, the relevance of cathepsin B in BOS progression has not yet been addressed. The aim of the study was to elucidate the function of cathepsin B in BOS pathogenesis.We determined cathepsin B levels in bronchoalveolar lavage fluid (BALF) and lung tissue from healthy donors (HD) and BOS LTx patients. Cathepsin B activity was assessed via a fluorescence resonance energy transfer-based assay and protein expression was determined using Western blotting, ELISA and immunostaining. To investigate the impact of cathepsin B in the pathophysiology of BOS, we used an in vivo orthotopic left LTx mouse model. Mechanistic studies were performed in vitro using macrophage and fibroblast cell lines.We found a significant increase of cathepsin B activity in BALF and lung tissue from BOS patients, as well as in our murine model of lymphocytic bronchiolitis. Moreover, cathepsin B activity was associated with increased biosynthesis of collagen and had a negative effect on lung function. We observed that cathepsin B was mainly expressed in macrophages that infiltrated areas characterised by a massive accumulation of collagen deposition. Mechanistically, macrophage-derived cathepsin B contributed to transforming growth factor-ß1-dependent activation of fibroblasts, and its inhibition reversed the phenotype.Infiltrating macrophages release active cathepsin B, thereby promoting fibroblast activation and subsequent collagen deposition, which drive BOS. Cathepsin B represents a promising therapeutic target to prevent the progression of BOS.


Asunto(s)
Bronquiolitis Obliterante , Trasplante de Pulmón , Animales , Líquido del Lavado Bronquioalveolar , Catepsina B , Humanos , Pulmón , Ratones
9.
Mamm Genome ; 31(1-2): 30-48, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32060626

RESUMEN

The collaborative cross (CC) is a large panel of mouse-inbred lines derived from eight founder strains (NOD/ShiLtJ, NZO/HILtJ, A/J, C57BL/6J, 129S1/SvImJ, CAST/EiJ, PWK/PhJ, and WSB/EiJ). Here, we performed a comprehensive and comparative phenotyping screening to identify phenotypic differences and similarities between the eight founder strains. In total, more than 300 parameters including allergy, behavior, cardiovascular, clinical blood chemistry, dysmorphology, bone and cartilage, energy metabolism, eye and vision, immunology, lung function, neurology, nociception, and pathology were analyzed; in most traits from sixteen females and sixteen males. We identified over 270 parameters that were significantly different between strains. This study highlights the value of the founder and CC strains for phenotype-genotype associations of many genetic traits that are highly relevant to human diseases. All data described here are publicly available from the mouse phenome database for analyses and downloads.


Asunto(s)
Ratones Endogámicos/genética , Fenotipo , Animales , Ratones de Colaboración Cruzada/genética , Bases de Datos Genéticas , Femenino , Estudios de Asociación Genética , Genotipo , Masculino , Ratones , Sitios de Carácter Cuantitativo , Especificidad de la Especie
10.
Am J Physiol Lung Cell Mol Physiol ; 317(5): L602-L614, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31461302

RESUMEN

Chronic obstructive pulmonary disease (COPD) is a life-threatening lung disease. Although cigarette smoke was considered the main cause of development, the heterogeneous nature of the disease leaves it unclear whether other factors contribute to the predisposition or impaired regeneration response observed. Recently, epigenetic modification has emerged to be a key player in the pathogenesis of COPD. The addition of methyl groups to arginine residues in both histone and nonhistone proteins by protein arginine methyltransferases (PRMTs) is an important posttranslational epigenetic modification event regulating cellular proliferation, differentiation, apoptosis, and senescence. Here, we hypothesize that coactivator-associated arginine methyltransferase-1 (CARM1) regulates airway epithelial cell injury in COPD pathogenesis by controlling cellular senescence. Using the naphthalene (NA)-induced mouse model of airway epithelial damage, we demonstrate that loss of CC10-positive club cells is accompanied by a reduction in CARM1-expressing cells of the airway epithelium. Furthermore, Carm1 haploinsuffficent mice showed perturbed club cell regeneration following NA treatment. In addition, CARM1 reduction led to decreased numbers of antisenescent sirtuin 1-expressing cells accompanied by higher p21, p16, and ß-galactosidase-positive senescent cells in the mouse airway following NA treatment. Importantly, CARM1-silenced human bronchial epithelial cells showed impaired wound healing and higher ß-galactosidase activity. These results demonstrate that CARM1 contributes to airway repair and regeneration by regulating airway epithelial cell senescence.


Asunto(s)
Senescencia Celular , Células Epiteliales/patología , Proteína-Arginina N-Metiltransferasas/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/patología , Mucosa Respiratoria/patología , Cicatrización de Heridas , Anciano , Animales , Apoptosis , Diferenciación Celular , Proliferación Celular , Células Epiteliales/metabolismo , Femenino , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Naftalenos/toxicidad , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Mucosa Respiratoria/metabolismo
11.
Pflugers Arch ; 470(8): 1231-1241, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29754249

RESUMEN

Transient receptor potential A1 (TRPA1) channels were originally characterized in neuronal tissues but also identified in lung epithelium by staining with fluorescently coupled TRPA1 antibodies. Its exact function in non-neuronal tissues, however, is elusive. TRPA1 is activated in vitro by hypoxia and hyperoxia and is therefore a promising TRP candidate for sensing hyperoxia in pulmonary epithelial cells and for inducing alveolar epithelial hyperplasia. Here, we isolated tracheal, bronchial, and alveolar epithelial cells and show low but detectable TRPA1 mRNA levels in all these cells as well as TRPA1 protein by Western blotting in alveolar type II (AT II) cells. We quantified changes in intracellular Ca2+ ([Ca2+]i) levels induced by application of hyperoxic solutions in primary tracheal epithelial, bronchial epithelial, and AT II cells isolated from wild-type (WT) and TRPA1-deficient (TRPA1-/-) mouse lungs. In all cell types, we detected hyperoxia-induced rises in [Ca2+]i levels, which were not significantly different in TRPA1-deficient cells compared to WT cells. We also tested TRPA1 function in a mouse model for hyperoxia-induced alveolar epithelial hyperplasia. A characteristic significant increase in thickening of alveolar tissues was detected in mouse lungs after exposure to hyperoxia, but not in normoxic WT and TRPA1-/- controls. Quantification of changes in lung morphology in hyperoxic WT and TRPA1-/- mice, however, again revealed no significant changes. Therefore, TRPA1 expression does neither appear to be a key player for hyperoxia-induced changes in [Ca2+]i levels in primary lung epithelial cells, nor being essential for the development of hyperoxia-induced alveolar epithelial hyperplasia.


Asunto(s)
Células Epiteliales/metabolismo , Hiperoxia/metabolismo , Hiperplasia/metabolismo , Pulmón/metabolismo , Alveolos Pulmonares/metabolismo , Canal Catiónico TRPA1/metabolismo , Animales , Bronquios/metabolismo , Línea Celular , Epitelio/metabolismo , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Transgénicos , ARN Mensajero/metabolismo
13.
Biochim Biophys Acta Mol Basis Dis ; 1863(2): 560-568, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27932059

RESUMEN

Pulmonary fibrosis (PF) is a chronic progressive lung disease without effective medical treatment options leading to respiratory failure and death within 3-5years of diagnosis. The pathological process of PF is driven by aberrant wound-healing involving fibroblasts and myofibroblasts differentiated by secreted profibrotic transforming growth factor ß (TGF-ß1). Classical transient receptor potential 6 (TRPC6), a Na+- and Ca2+-permeable cation channel, is able to promote myofibroblast conversion of primary rat cardiac and human dermal fibroblasts and TRPC6-deficiency impaired wound healing after injury. To study a potential role of TRPC6 in the development of PF we analyzed lung function, gene and protein expression in wild-type (WT) and TRPC6-deficient (TRPC6-/-) lungs utilizing a bleomycin-induced PF-model. Fibrotic WT-mice showed a significant higher death rate while bleomycin-treated TRPC6-deficient mice were partly protected from fibrosis as a consequence of a lower production of collagen and an almost normal function of the respiratory system (reduced resistance and elastance compared to fibrotic WT-mice). On a molecular level TGF-ß1 induced TRPC6 up-regulation, increased Ca2+ influx and nuclear NFAT localization in WT primary murine lung fibroblasts (PMLFs) resulting in higher stress fiber formation and accelerated contraction rates as compared to treated TRPC6-deficient fibroblasts. Therefore, we conclude that TRPC6 is an important determinant for TGF-ß1-induced myofibroblast differentiation during fibrosis and specific channel inhibitors might be beneficial in a future treatment of PF.


Asunto(s)
Pulmón/patología , Miofibroblastos/patología , Fibrosis Pulmonar/metabolismo , Canales Catiónicos TRPC/metabolismo , Animales , Diferenciación Celular , Transdiferenciación Celular , Células Cultivadas , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Eliminación de Gen , Pulmón/metabolismo , Ratones , Ratones Endogámicos C57BL , Miofibroblastos/metabolismo , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/patología , Canales Catiónicos TRPC/genética , Canal Catiónico TRPC6 , Factor de Crecimiento Transformador beta1/metabolismo , Regulación hacia Arriba
14.
Am J Physiol Lung Cell Mol Physiol ; 310(10): L919-27, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-26993522

RESUMEN

To date, phenotyping and disease course prediction in idiopathic pulmonary fibrosis (IPF) primarily relies on lung function measures. Blood biomarkers were recently proposed for diagnostic and outcome prediction in IPF, yet their correlation with lung function and histology remains unclear. Here, we comprehensively assessed biomarkers in liquid biopsies and correlated their abundance with lung function and histology during the onset, progression, and resolution of lung fibrosis, with the aim to more precisely evaluate disease progression in the preclinical model of bleomycin-induced pulmonary fibrosis in vivo. Importantly, the strongest correlation of lung function with histological extent of fibrosis was observed at day 14, whereas lung function was unchanged at days 28 and 56, even when histological assessment showed marked fibrotic lesions. Although matrix metalloproteinase-7 (MMP-7), MMP-9, and PAI-1 were significantly elevated in broncheoalveolar lavage of fibrotic mice, only soluble ICAM-1 (sICAM-1) was elevated in the peripheral blood of fibrotic mice and was strongly correlated with the extent of fibrosis. Importantly, tissue-bound ICAM-1 was also elevated in lung homogenates, with prominent staining in hyperplastic type II alveolar epithelial and endothelial cells. In summary, we show that lung function decline is not a prerequisite for histologically evident fibrosis, particularly during the onset or resolution thereof. Plasma levels of sICAM-1 strongly correlate with the extent of lung fibrosis, and may thus be considered for the assessment of intraindividual therapeutic studies in preclinical studies of pulmonary fibrosis.


Asunto(s)
Fibrosis Pulmonar/sangre , Células Epiteliales Alveolares/metabolismo , Animales , Biomarcadores/sangre , Células Cultivadas , Femenino , Molécula 1 de Adhesión Intercelular/sangre , Pulmón/metabolismo , Pulmón/patología , Ratones Endogámicos C57BL , Fenotipo , Fibrosis Pulmonar/patología
15.
Am J Physiol Lung Cell Mol Physiol ; 311(3): L602-10, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27448665

RESUMEN

Epidemiological evidence demonstrates a strong link between postnatal cigarette smoke (CS) exposure and increased respiratory morbidity in young children. However, how CS induces early onset airway disease in young children, and how it interacts with endogenous risk factors, remains poorly understood. We, therefore, exposed 10-day-old neonatal wild-type and ß-epithelial sodium ion channel (ß-ENaC)-transgenic mice with cystic fibrosis-like lung disease to CS for 4 days. Neonatal wild-type mice exposed to CS demonstrated increased numbers of macrophages and neutrophils in the bronchoalveolar lavage fluid (BALF), which was accompanied by increased levels of Mmp12 and Cxcl1 BALF from ß-ENaC-transgenic mice contained greater numbers of macrophages, which did not increase following acute CS exposure; however, there was significant increase in airway neutrophilia compared with filtered air transgenic and CS-exposed wild-type controls. Interestingly, wild-type and ß-ENaC-transgenic mice demonstrated epithelial airway and vascular remodeling following CS exposure. Morphometric analysis of lung sections revealed that CS exposure caused increased mucus accumulation in the airway lumen of neonatal ß-ENaC-transgenic mice compared with wild-type controls, which was accompanied by an increase in the number of goblet cells and Muc5ac upregulation. We conclude that short-term CS exposure 1) induces acute airway disease with airway epithelial and vascular remodeling in neonatal wild-type mice; and 2) exacerbates airway inflammation, mucus hypersecretion, and mucus plugging in neonatal ß-ENaC-transgenic mice with chronic lung disease. Our results in neonatal mice suggest that young children may be highly susceptible to develop airway disease in response to tobacco smoke exposure, and that adverse effects may be aggravated in children with underlying chronic lung diseases.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica/etiología , Fumar/efectos adversos , Remodelación de las Vías Aéreas (Respiratorias) , Animales , Animales Recién Nacidos , Femenino , Pulmón/irrigación sanguínea , Pulmón/inmunología , Pulmón/patología , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Enfermedad Pulmonar Obstructiva Crónica/patología , Mucosa Respiratoria/patología , Humo/efectos adversos , Nicotiana/efectos adversos
16.
Clin Sci (Lond) ; 130(4): 273-87, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26564208

RESUMEN

Chronic obstructive pulmonary disease (COPD) is characterized by chronic bronchitis, small airway remodelling and emphysema. Emphysema is the destruction of alveolar structures, leading to enlarged airspaces and reduced surface area impairing the ability for gaseous exchange. To further understand the pathological mechanisms underlying progressive emphysema, we used MS-based approaches to quantify the lung, bronchoalveolar lavage fluid (BALF) and serum metabolome during emphysema progression in the established murine porcine pancreatic elastase (PPE) model on days 28, 56 and 161, compared with PBS controls. Partial least squares (PLS) analysis revealed greater changes in the metabolome of lung followed by BALF rather than serum during emphysema progression. Furthermore, we demonstrate for the first time that emphysema progression is associated with a reduction in lung-specific L-carnitine, a metabolite critical for transporting long-chain fatty acids into the mitochondria for their subsequent ß-oxidation. In vitro, stimulation of the alveolar epithelial type II (ATII)-like LA4 cell line with L-carnitine diminished apoptosis induced by both PPE and H2O2. Moreover, PPE-treated mice demonstrated impaired lung function compared with PBS-treated controls (lung compliance; 0.067±0.008 ml/cmH20 compared with 0.035±0.005 ml/cmH20, P<0.0001), which improved following supplementation with L-carnitine (0.051±0.006, P<0.01) and was associated with a reduction in apoptosis. In summary, our results provide a new insight into the role of L-carnitine and, importantly, suggest therapeutic avenues for COPD.


Asunto(s)
Carnitina/metabolismo , Pulmón/metabolismo , Metaboloma , Metabolómica , Enfisema Pulmonar/metabolismo , Animales , Apoptosis , Biomarcadores/sangre , Líquido del Lavado Bronquioalveolar/química , Carnitina/sangre , Carnitina/farmacología , Línea Celular , Modelos Animales de Enfermedad , Regulación hacia Abajo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Femenino , Análisis de los Mínimos Cuadrados , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/fisiopatología , Rendimiento Pulmonar , Espectrometría de Masas , Metabolómica/métodos , Ratones Endogámicos C57BL , Elastasa Pancreática , Enfisema Pulmonar/sangre , Enfisema Pulmonar/inducido químicamente , Enfisema Pulmonar/patología , Enfisema Pulmonar/fisiopatología , Enfisema Pulmonar/prevención & control , Superóxidos/metabolismo , Factores de Tiempo
17.
J Biol Chem ; 288(23): 16690-16703, 2013 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-23620591

RESUMEN

The nuclei of most vertebrate cells contain members of the high mobility group N (HMGN) protein family, which bind specifically to nucleosome core particles and affect chromatin structure and function, including transcription. Here, we study the biological role of this protein family by systematic analysis of phenotypes and tissue transcription profiles in mice lacking functional HMGN variants. Phenotypic analysis of Hmgn1(tm1/tm1), Hmgn3(tm1/tm1), and Hmgn5(tm1/tm1) mice and their wild type littermates with a battery of standardized tests uncovered variant-specific abnormalities. Gene expression analysis of four different tissues in each of the Hmgn(tm1/tm1) lines reveals very little overlap between genes affected by specific variants in different tissues. Pathway analysis reveals that loss of an HMGN variant subtly affects expression of numerous genes in specific biological processes. We conclude that within the biological framework of an entire organism, HMGNs modulate the fidelity of the cellular transcriptional profile in a tissue- and HMGN variant-specific manner.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Proteínas HMGN/metabolismo , Transcripción Genética/fisiología , Animales , Proteínas HMGN/genética , Ratones , Ratones Mutantes , Especificidad de Órganos/fisiología
18.
Am J Physiol Lung Cell Mol Physiol ; 307(9): L692-706, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25128521

RESUMEN

Chronic obstructive pulmonary disease (COPD) is characterized by a progressive decline in lung function, caused by exposure to exogenous particles, mainly cigarette smoke (CS). COPD is initiated and perpetuated by an abnormal CS-induced inflammatory response of the lungs, involving both innate and adaptive immunity. Specifically, B cells organized in iBALT structures and macrophages accumulate in the lungs and contribute to CS-induced emphysema, but the mechanisms thereof remain unclear. Here, we demonstrate that B cell-deficient mice are significantly protected against CS-induced emphysema. Chronic CS exposure led to an increased size and number of iBALT structures, and increased lung compliance and mean linear chord length in wild-type (WT) but not in B cell-deficient mice. The increased accumulation of lung resident macrophages around iBALT and in emphysematous alveolar areas in CS-exposed WT mice coincided with upregulated MMP12 expression. In vitro coculture experiments using B cells and macrophages demonstrated that B cell-derived IL-10 drives macrophage activation and MMP12 upregulation, which could be inhibited by an anti-IL-10 antibody. In summary, B cell function in iBALT formation seems necessary for macrophage activation and tissue destruction in CS-induced emphysema and possibly provides a new target for therapeutic intervention in COPD.


Asunto(s)
Linfocitos B/inmunología , Activación de Macrófagos , Macrófagos/inmunología , Metaloproteinasa 12 de la Matriz/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Enfisema Pulmonar/inmunología , Contaminación por Humo de Tabaco/efectos adversos , Animales , Anticuerpos/farmacología , Linfocitos B/metabolismo , Linfocitos B/patología , Movimiento Celular , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Humanos , Interleucina-10/antagonistas & inhibidores , Interleucina-10/genética , Interleucina-10/metabolismo , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/patología , Macrófagos/metabolismo , Macrófagos/patología , Metaloproteinasa 12 de la Matriz/genética , Ratones , Ratones Noqueados , Elastasa Pancreática , Enfermedad Pulmonar Obstructiva Crónica/inducido químicamente , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/patología , Enfisema Pulmonar/inducido químicamente , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/patología , Pruebas de Función Respiratoria
19.
Clin Sci (Lond) ; 126(3): 207-21, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23875733

RESUMEN

COPD (chronic obstructive pulmonary disease) is caused by exposure to toxic gases and particles, most often CS (cigarette smoke), leading to emphysema, chronic bronchitis, mucus production and a subsequent decline in lung function. The disease pathogenesis is related to an abnormal CS-induced inflammatory response of the lungs. Similar to active (mainstream) smoking, second hand (sidestream) smoke exposure severely affects respiratory health. These processes can be studied in vivo in models of CS exposure of mice. We compared the acute inflammatory response of female C57BL/6 mice exposed to two concentrations [250 and 500 mg/m3 TPM (total particulate matter)] of sidestream and mainstream CS for 3 days and interpreted the biological effects based on physico-chemical differences in the gas and particulate phase composition of CS. BAL (bronchoalveolar lavage fluid) was obtained to perform differential cell counts and to measure cytokine release. Lung tissue was used to determine mRNA and protein expression of proinflammatory genes and to assess tissue inflammation. A strong acute inflammatory response characterized by neutrophilic influx, increased cytokine secretion [KC (keratinocyte chemoattractant), TNF-α (tumour necrosis factor α), MIP-2 (macrophage inflammatory protein 2), MIP-1α and MCP-1 (monocyte chemoattractant protein-1)], pro-inflammatory gene expression [KC, MIP-2 and MMP12 (matrix metalloproteinase 12)] and up-regulated GM-CSF (granulocyte macrophage colony-stimulating factor) production was observed in the mainstream model. After sidestream exposure there was a dampened inflammatory reaction consisting only of macrophages and diminished GM-CSF levels, most likely caused by elevated CO concentrations. These results demonstrate that the composition of CS determines the dynamics of inflammatory cell recruitment in COPD mouse models. Different initial inflammatory processes might contribute to COPD pathogenesis in significantly varying ways, thereby determining the outcome of the studies.


Asunto(s)
Modelos Animales de Enfermedad , Infiltración Neutrófila , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Enfermedad Pulmonar Obstructiva Crónica/patología , Humo/efectos adversos , Humo/análisis , Fumar/efectos adversos , Fumar/patología , Animales , Líquido del Lavado Bronquioalveolar/química , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/inmunología , Citocinas/metabolismo , Femenino , Inflamación/metabolismo , Inflamación/patología , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Enfermedad Pulmonar Obstructiva Crónica/metabolismo
20.
Res Sq ; 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38352619

RESUMEN

Aging is the main risk factor for chronic lung diseases (CLDs) including idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD). Accordingly, hallmarks of aging such as cellular senescence are present in different lung cell types such as fibroblasts in these patients. However, whether the senescent phenotype of fibroblasts derived from IPF or COPD patients differs is still unknown. Therefore, we characterized senescence at baseline and after exposure to disease-relevant insults (H 2 O 2 , bleomycin, and TGF-ß1) in cultured primary human lung fibroblasts (phLF) from control donors, IPF, or COPD patients. We found that phLF from different disease-origins have a low baseline senescence. H 2 O 2 and bleomycin treatment induced a senescent phenotype in phLF, whereas TGF-ß1 had primarily a pro-fibrotic effect. Notably, we did not observe any differences in susceptibility to senescence induction in phLF based on disease origin, while exposure to different stimuli resulted in distinct senescence programs in phLF. Moreover, senescent phLF reduced colony formation efficiency of distal alveolar epithelial progenitor cells in a stimuli-dependent manner. In conclusion, the senescent phenotype of phLF is mainly determined by the senescence inducer and impairs alveolar epithelial progenitor capacity in vitro .

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA