Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Med Vet Entomol ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864653

RESUMEN

Some dipteran flies play an important role in the transmission of pathogens such as viruses, bacteria, fungi, protozoan and metazoan parasites in humans and other animals. Despite this importance, knowledge of the prevalence and molecular characteristics of some pathogens in flies is limited, and no data are available for Türkiye. In this study, we investigated the possible vector role of muscid fly species for the transmission of Enterocytozoon bieneusi Desportes (Chytridiopsida: Enterocytozoonidae), Encephalitozoon spp., Coxiella burnetii Derrick (Legionellales: Coxiellaceae) and Thelazia spp. using polymerase chain reaction (PCR) and sequence analysis. The flies were trapped in different animal-related places and surroundings from two different geographical regions of Türkiye including Central Anatolia and Middle Black Sea. According to the morphological keys, 850 (85%), 141 (14.1%) and 6 (0.6%) of the total of 1000 fly specimens identified as Musca domestica Linnaeus (Diptera: Muscidae), Stomoxys calcitrans Linnaeus (Diptera: Muscidae) and Musca autumnalis De Geer (Diptera: Muscidae), respectively. The other species including Haematobia irritans Linnaeus (Diptera: Muscidae), Muscina stabulans Fallén (Diptera: Muscidae) and Hydrotaea ignava Harris (Diptera: Muscidae) were each represented by a single specimen. Screening of the pathogens identified E. bieneusi only in M. domestica with a prevalence of 2.4%. Sequence analyses identified three known genotypes, Type IV, BEB6 and BEB8, and one novel genotype named AEUEb of E. bieneusi in M. domestica. Coxiella burnetii was detected in M. domestica and S. calcitrans with prevalences of 2.9% and 2.8%, respectively. The one specimen of H. ignava was also positive for C. burnetii. Encephalitozoon spp. and Thelazia spp. were not found in the examined specimens. Our results contribute to the current knowledge on the vector potential of muscid flies and their possible role in the transmission dynamics of certain pathogens, especially in regions where diseases are prevalent and affect public and animal health.

2.
Parasitol Res ; 123(4): 183, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38622363

RESUMEN

Dientamoeba fragilis and Blastocystis sp. are single-celled protozoan parasites of humans and animals. Although they are found in the intestines of healthy hosts, the pathogenicity of them is still unclear. To date, there is no report on D. fragilis and only two studies (without subtyping) on the occurrence of Blastocystis sp. in Musca domestica. In this study, fly samples were collected from livestock farms and their surroundings in the Kirsehir province (Central Anatolia Region) of Türkiye from May to August 2023. A total of 150 microscopically identified M. domestica samples were analyzed for the detection of D. fragilis and Blastocystis sp. molecularly. The overall prevalence of Blastocystis sp. and D. fragilis in M. domestica was determined to be 3.3% (5/150) and 8.0% (12/150), respectively. The SSU rRNA gene sequences of the isolates indicated genotype 1 of D. fragilis. Eleven isolates were identical and represented a single isolate (KAU-Dfrag1). BLAST analysis of KAU-Dfrag1 indicated identity with the isolates reported from humans, cattle, sheep, and budgerigars. The other isolate (KAU-Dfrag2) was polymorphic at two nucleotides from KAU-Dfrag1 and three nucleotides from known genotypes from GenBank and represented a variant of genotype 1. The Blastocystis sp. isolates were found to be identical and represent a single genotype (KAU-Blast1). BLAST analysis revealed that the KAU-Blast1 genotype belonged to the potentially zoonotic subtype 5 (ST5) and exhibited the highest genetic identity (ranging from 99.4 to 99.6%) with pigs, cattle, and sheep from different countries. Our study provides the first data on the molecular prevalence, epidemiology, and genotypic characterization of D. fragilis and Blastocystis sp. in M. domestica.


Asunto(s)
Infecciones por Blastocystis , Blastocystis , Moscas Domésticas , Muscidae , Humanos , Animales , Ovinos , Bovinos , Porcinos , Dientamoeba , Infecciones por Blastocystis/epidemiología , Infecciones por Blastocystis/veterinaria , Infecciones por Blastocystis/parasitología , Genotipo , Heces/parasitología , Prevalencia , Nucleótidos
3.
Acta Parasitol ; 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39164546

RESUMEN

PURPOSE: The objectives of the present study are to determine the molecular prevalence of Leishmania spp. in the owned domestic cats in the Black Sea Region of Türkiye and analyze the associated risk factors in FeL. METHODS: Conjunctival swabs (CS), blood, demographic, and clinical data were collected from 150 owned cats brought to the Veterinary Teaching Hospital during 2020-2022. Leishmania kinetoplast DNA (kDNA) from CS was screened by TaqMan Real-Time PCR (qPCR) with the genus-specific primers and a probe. RESULTS: All qPCR positive products were also amplified and sequenced to identify Leishmania species by ITS1 primers. Molecular prevalence of L. infantum found as 12.6% (19/150) in the observed cats in the Black Sea Region of Türkiye. There was a significant difference (p < 0.05) between neutered and intact cats with regarding to L. infantum positivity. Intact cats found to be 0.368 times more prone to be L. infantum-positive (L+). Dermatological lesions were found the most common (26.3%) problems in the L + cats. The median leucocyte count was the only parameter that was found statistically (p < 0.05) lower in the L + group (6.60) than the negative group (L-) (8.96), when comparing the WBC, NEU/LYM, MONO/LYM, EOS/LYM and PLT/LYM values. CONCLUSION: This study presented the molecular occurrence of FeL in the Black Sea Region of Türkiye for the first time indicating that the carrier status of the cats makes them alternative reservoirs for possible zoonotic transmission of L. infantum in this zone.

4.
Turkiye Parazitol Derg ; 47(4): 256-274, 2023 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-38149449

RESUMEN

The "One Health" concept is a universal approach to sustainably balancing and optimizing the health of humans, animals, and ecosystems. This approach is based on the health of humans, domestic and wild animals, and plants in a wider environment in which self-renewable ecosystems exist, with essential characteristics of integration, unifying and holistic perspective. Toxoplasmosis, one of the most common zoonotic infections in both terrestrial and oceanic ecosystems in the world, is an ideal model disease for the "One Health" approach. Toxoplasmosis is a zoonotic disease caused by the obligate intracellular pathogen protozoan Toxoplasma gondii. In the life cycle of T. gondii, the definitive host is domestic cats and felines, and the intermediate hosts are all mammals (including humans), birds and reptiles. The infected cats have primary importance and play a crucial role in the contamination of habitats in the ecosystems with T. gondii oocysts. Thus, ecosystems with domestic cats and stray cats are contaminated with cat feces infected with T. gondii oocytes. T. gondii positivity has been scientifically demonstrated in all warm-blooded animals in terrestrial and aquatic habitats. The disease causes deaths and abortions in farm animals, resulting in great economic losses. However, the disease causes great problems in humans, especially pregnant women. During pregnancy, it may have effects such as congenital infections, lesions in the eye and brain of the fetus, premature birth, intrauterine growth retardation, fever, pneumonia, thrombocytopenia, ocular lesions, encephalitis, and abortion. The mechanism of death and abortion of the fetus in a pregnant woman infected with T. gondii occurs as a result of complete disruption of the maternal immune mechanism. The struggle against toxoplasmosis requires the universal collaboration and coordination of the World Organization for Animal Health, the World Health Organization and the World Food Organization in the "One Health" concept and integrative approaches of all responsible disciplines. Establishing universal environmental safety with the prevention and control of toxoplasmosis requires the annihilation of the feces of the infected cats using suitable techniques firstly. Then routinely, the monitoring and treatment of T. gondii positivity in cats, avoiding contact with contaminated foods and materials, and development of modern treatment and vaccine options. Particularly, mandatory monitoring or screening of T. gondii positivity during the pregnancy period in humans should be done. It would be beneficial to replace the French model, especially in the monitoring of disease in humans. In this article, the ecology of toxoplasmosis was reviewed at the base of the "One Health" concept.


Asunto(s)
Enfermedades de los Gatos , Salud Única , Toxoplasma , Toxoplasmosis Animal , Toxoplasmosis , Femenino , Humanos , Animales , Embarazo , Gatos , Ecosistema , Zoonosis , Animales Domésticos , Toxoplasmosis Animal/epidemiología , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA