RESUMEN
BACKGROUND: Leukocytes are induced to migrate into the uterus at parturition, releasing cytokines and chemokines that activate it for delivery. A specific chemotactic signal is required for these actions, and published evidence suggests that it comes from the human fetal membranes and has a time-dependent component (ie, cells obtained at term in labor migrate more than cells obtained at term not yet in labor). The hypothesis that the fetal membrane chemoattractants activate the leukocytes to become responsive for migration was tested. OBJECTIVE: This study aimed to: (1) examine the changes in leukocyte migration-responsiveness longitudinally from the late third trimester, to in labor, to 3 days postpartum; (2) explore the specific week-to-week changes in migration before delivery; (3) define the timing of chemokine receptor expression patterns in leukocytes relative to migration and the changes in cytokine and chemokine concentrations in maternal serum; (4) examine the ability of term fetal membrane-conditioned medium and term maternal serum to increase cell responsiveness; and (5) test the potential of the leukocyte migration assay to predict delivery within 1 week. STUDY DESIGN: Leukocyte migration in response to a chemoattractive extract of term human fetal membranes was studied using a modified Boyden chamber. Flow cytometry assessed migrated cell phenotypes. The relationship between the expression of chemokine receptors and migration was tested using quantitative polymerase chain reaction, the bioassay, and regression analyses. Cytokines and chemokines in maternal serum were quantified using multiplex analysis. Conditioned medium from fetal membrane explants and maternal serum were evaluated for their abilities to enhance leukocyte migration using the bioassay. The ability of the bioassay to predict term delivery was assessed using receiver-operating characteristic curve and cost-curve analysis. RESULTS: The number of leukocytes that migrated at term delivery was increased relative to the late third trimester, followed by a significant fall in numbers that migrated at 3 days postpartum (P=.002). The largest increase in migrated cells occurred 1 to 2 weeks before delivery. The messenger RNA abundance of several chemokine receptors increased in peripheral leukocytes at term in labor relative to the third trimester, and this correlated with an increase in migrated cells in 5 of 6 cases (R=0.589 to 0.897; P<.03). The concentrations of several chemokines and cytokines in maternal serum increased with labor onset. Fetal membrane explant-conditioned medium and maternal serum obtained at term labor increased the responsiveness of leukocytes to fetal membrane chemoattractive extract. The bioassay was demonstrated to predict delivery within 7 days with excellent performance characteristics using a cohort prevalence of 71.7% (positive predictive value=96.1%; negative predictive value=58.5%; sensitivity=74.2%; specificity=92.3%; positive likelihood ratio=9.25; and negative likelihood ratio=0.28). A single determination was validated to have a high degree of confidence. CONCLUSION: Term human fetal membranes release chemoattractants near the end of pregnancy that increase in ability to activate and attract an increasing number of leukocytes as gestation advances.
Asunto(s)
Membranas Extraembrionarias , Trabajo de Parto , Leucocitos , Humanos , Femenino , Embarazo , Leucocitos/metabolismo , Membranas Extraembrionarias/metabolismo , Citocinas/metabolismo , Tercer Trimestre del Embarazo , Movimiento Celular , Receptores de Quimiocina/metabolismo , Adulto , Quimiocinas/metabolismo , Quimiocinas/sangre , Nacimiento a Término , Quimiotaxis de LeucocitoRESUMEN
OBJECTIVE: Fetal growth restriction (FGR) is a devastating pregnancy complication that increases the risk of perinatal mortality and morbidity. This study aims to determine the combined and relative effects of genetic and intrauterine environments on neonatal microbial communities and to explore selective FGR-induced gut microbiota disruption, metabolic profile disturbances and possible outcomes. DESIGN: We profiled and compared the gut microbial colonisation of 150 pairs of twin neonates who were classified into four groups based on their chorionicity and discordance of fetal birth weight. Gut microbiota dysbiosis and faecal metabolic alterations were determined by 16S ribosomal RNA and metagenomic sequencing and metabolomics, and the long-term effects were explored by surveys of physical and neurocognitive development conducted after 2~3 years of follow-up. RESULTS: Adverse intrauterine environmental factors related to selective FGR dominate genetics in their effects of elevating bacterial diversity and altering the composition of early-life gut microbiota, and this effect is positively related to the severity of selective FGR in twins. The influence of genetic factors on gut microbes diminishes in the context of selective FGR. Gut microbiota dysbiosis in twin neonates with selective FGR and faecal metabolic alterations features decreased abundances of Enterococcus and Acinetobacter and downregulated methionine and cysteine levels. Correlation analysis indicates that the faecal cysteine level in early life is positively correlated with the physical and neurocognitive development of infants. CONCLUSION: Dysbiotic microbiota profiles and pronounced metabolic alterations are associated with selective FGR affected by adverse intrauterine environments, emphasising the possible effects of dysbiosis on long-term neurobehavioural development.
Asunto(s)
Microbioma Gastrointestinal , Recién Nacido , Embarazo , Lactante , Femenino , Humanos , Disbiosis , Cisteína/farmacología , ARN Ribosómico 16S/genética , Metaboloma , Heces/microbiologíaRESUMEN
BACKGROUND: Recurrent spontaneous abortion (RSA), is a dangerous pregnancy-related condition and is a subject of debate in the gynaecology and obstetrics communities. The objective of this study was to determine the function of DNA Topoisomerase II Alpha (TOP2A) in RSA and elucidate the underlying molecular mechanisms. METHODS: In vitro models of TOP2A-knockdown and -overexpression were generated by transfecting specific sh-RNA lentivirus and overexpression plasmid, respectively. An in vitro TOP2A inhibition model was established by culturing mouse embryos at the two-cell stage in a medium containing PluriSIn2, a TOP2A inhibitor. Immunohistochemical staining was used to analyse expression of TOP2A in villi tissues of patients with RSA. Western blotting and qRT-PCR were used to analyse the expression of TOP2A and proteins involved in trophoblast functions, the FOXO signalling pathway, and the development of pre-implantation embryos. 5-Ethynyl-2'-deoxyuridine staining, TUNEL assay and flow cytometry were used to further evaluate the effect of TOP2A on cell proliferation and apoptosis. Transwell and wound healing assays were used to evaluate migration and invasion. Moreover, the effect of TOP2A inhibitor on embryos was determined by immunofluorescence and mitochondrial-related dyes. RESULTS: Evaluation of clinical samples revealed that the villi tissues of patients that have experienced RSA had lower TOP2A expression compared with that from women who have experienced normal pregnancy (P < 0.01). In vitro, TOP2A knockdown decreased the proliferation, migration, and invasion of trophoblast cell lines, and increased apoptosis and activation of the FOXO signalling pathway (P < 0.05). Conversely, TOP2A overexpression reversed these effects. Moreover, in vivo experiments confirmed that inhibition of TOP2A impairs trophectoderm differentiation, embryonic mitochondrial function as well as the developmental rate; however, no differences were noted in the expression of zygotic genome activation-related genes. CONCLUSIONS: Collectively, our data suggest that lower TOP2A expression is related to RSA as it inhibits trophoblast cell proliferation, migration, and invasion by activation of the FOXO signalling pathway. Additionally, TOP2A inhibition resulted in impaired development of pre-implantation embryos in mice, which could be attributed to excessive oxidative stress.
Asunto(s)
Aborto Habitual , ADN-Topoisomerasas de Tipo II , Animales , Femenino , Humanos , Ratones , Embarazo , Movimiento Celular , Proliferación Celular , ADN-Topoisomerasas de Tipo II/genética , ADN-Topoisomerasas de Tipo II/metabolismo , Desarrollo Embrionario/genética , Trastornos del Crecimiento/metabolismo , Trofoblastos/metabolismoRESUMEN
BACKGROUND: Inadequate trophoblast invasion is associated with preeclampsia (PE). Ankyrin repeat domain protein 37 (ANKRD37) has been reported to be abnormally expressed in PE placentas. However, the role of ANKRD37 in trophoblasts has not been investigated. We aimed to determine the functions of ANKRD37 in PE and to explore the molecular mechanisms. METHODS: Here, fluorescence in situ hybridization, immunohistochemistry, Western blotting and quantitative real-time polymerase chain reaction were used to detect protein and mRNA expression levels. Cell counting kit-8 assay, 5-ethynyl-2'-deoxyuridine assay, flow cytometry, wound healing assay, transwell assay and RNA sequencing were performed to investigate the role of ANKRD37 and the underlying mechanism in HTR8/SVneo and JEG-3 cells, and extravillous explant cultures were used to evaluate the migration and invasion abilities of extravillous cytotrophoblasts. RESULTS: We found that ANKRD37 expression was upregulated in PE placentas compared to normal pregnancy placentas. ANKRD37 knockdown enhanced trophoblast migration and invasion, promoted extravillous explant outgrowth, and regulated the expression of key invasion proteins, whereas ANKRD37 overexpression exerted the opposite effects. RNA sequencing indicated that nuclear factor-kappa B (NF-κB) was the potential downstream pathway of ANKRD37, which was confirmed by the change in p-p65 and p-IκBα expression in JEG-3 and HTR8/SVneo cells. CONCLUSIONS: Our findings suggest that high expression of ANKRD37 inhibits trophoblast cell migration and invasion possibly via the NF-κB pathway, and may be related to the development of PE.
Asunto(s)
Preeclampsia , Trofoblastos , Línea Celular Tumoral , Movimiento Celular/genética , Femenino , Humanos , Hibridación Fluorescente in Situ , FN-kappa B/genética , FN-kappa B/metabolismo , Preeclampsia/genética , Preeclampsia/metabolismo , Embarazo , Trofoblastos/metabolismoRESUMEN
Recurrent miscarriage (RM) and unexplained infertility (UI) are gordian knots in reproductive medicine, which are troubling many patients, doctors, and researchers. Although these two diseases of early pregnancy have a significant impact on human reproductive health, little is known about the specific mechanisms, which caused treatment difficulties. This study focused on the molecular signatures underlying the pathological phenotypes of two diseases, with the hope of using statistical methods to identify the significant core genes. An unbiased Weighted Correlation Network Analysis (WGCNA) algorithm was used for endometrial transcriptome data analysis and the disease-related gene modules were screened out. Through enrichment analysis of the candidate genes, we found similarities between both diseases and shared enrichment of immune-related pathways. Therefore, we used immune algorithms to assess the infiltration of immune cells and found abnormal increases of CD8+T cells and neutrophils. In order to explore the molecular profile behind the immunophenotypic changes, we used the SVM algorithm and LASSO regression to identify the core genes with diagnostic capacity in both diseases and discussed their significance of immune disorders in the endometrium. In the end, the satisfactory diagnostic ability of these core genes was verified in the broader group. Our results demonstrated the presence of immune disorders in non-pregnancy tissues of RM and UI, and identified the core molecules of this phenotype, and discuss mechanisms. This provides exploratory evidence for the in-depth understanding of the mechanism of RM and UI and may provide potential targets for their future treatment.
Asunto(s)
Aborto Habitual , Infertilidad , Aborto Habitual/genética , Endometrio/patología , Femenino , Perfilación de la Expresión Génica , Humanos , Embarazo , Transcriptoma/genéticaRESUMEN
BACKGROUND: Selective intrauterine fetal growth restriction (sIUGR) in monochorionic diamniotic twins, especially types 2&3 with abnormal umbilical artery Doppler, results in increased risk of fetal/perinatal mortality and postnatal disability. We investigate whether the hair metabolome profiles of neonates were associated with the pathophysiological differences across the different clinical forms of sIUGR in twins. METHODS: Hair samples were collected at delivery from 10 pairs of type 1 sIUGR twins, 8 pairs of types 2&3 sIUGR twins, and 11 pairs of twins without sIUGR. The hair metabolome was characterized using gas chromatography-mass spectrometry. RESULTS: Our results demonstrated that the hair metabolite profiles of the different sIUGR subclinical forms were associated with the averaged fetal growth rate after 28 weeks of gestation but not with birthweight. The hair profiles were capable of discriminating type2&3 sIUGR twins from twins without sIUGR. In particular, the metabolites 2-aminobutyric acid, cysteine, alanine, and tyrosine all displayed areas under the receiver operating characteristic curve were above 0.9. The metabolic pathway analysis highlighted the associations of sIUGR twins with abnormal umbilical artery flow with increased metabolites from a nutrient depletion pathway, glutathione metabolism, and nerve development. CONCLUSION: This study offers novel insight into the severity of intrauterine ischemia and hypoxia for T2&3 sIUGR twins, through evaluation of the neonatal hair metabolome.
Asunto(s)
Metabolismo Energético , Retardo del Crecimiento Fetal/metabolismo , Cabello/metabolismo , Fenotipo , Gemelos Monocigóticos , Arterias Umbilicales/fisiopatología , Estudios de Casos y Controles , Biología Computacional , Femenino , Retardo del Crecimiento Fetal/diagnóstico , Cromatografía de Gases y Espectrometría de Masas , Edad Gestacional , Humanos , Recién Nacido , Metaboloma , Metabolómica/métodos , Embarazo , Curva ROC , Flujo Sanguíneo Regional , Ultrasonografía PrenatalRESUMEN
Spontaneous preterm birth (sPTB), defined as delivery before 37 weeks of gestation, is thought to be a multifactorial syndrome. However, the inflammatory imbalance at the maternal-fetal interface promotes excessive secretion of inflammatory factors and induces apoptosis and degradation of the extracellular matrix (ECM), which can subsequently lead to preterm birth. As an anti-inflammatory molecule in the IL-1 family, interleukin-37 (IL-37) mainly plays an inhibiting role in a variety of inflammatory diseases. However, as a typical inflammatory disease, no previous studies have been carried out to explore the role of IL-37 in sPTB. In this study, a series of molecular biological experiments were performed in clinical samples and human amniotic epithelial cell line (Wistar Institute Susan Hayflick (WISH)) to investigate the deficiency role of IL-37 and the potential mechanism. Firstly, the results indicated that the expression of IL-37 in human peripheral plasma and fetal membranes was significantly decreased in the sPTB group. Afterward, it is proved that IL-37 could significantly suppress the production of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6) in WISH cells. Simultaneously, once silence IL-37, LPS-induced apoptosis and activity of matrix metalloproteinases (MMPs) 2 and 9 were significantly increased. In addition, the western blot data showed that IL-37 performed its biological effects by inhibiting the NF-κB and IL-6/STAT3 pathway. In conclusion, our results suggest that IL-37 limits excessive inflammation and subsequently inhibits ECM remodeling and apoptosis through the NF-κB and IL-6/STAT3 signaling pathway in the fetal membranes.
Asunto(s)
Amnios/metabolismo , Inflamación/metabolismo , Interleucina-1/metabolismo , Interleucina-6/metabolismo , FN-kappa B/metabolismo , Nacimiento Prematuro/metabolismo , Factor de Transcripción STAT3/metabolismo , Adulto , Apoptosis/genética , Apoptosis/fisiología , Western Blotting , Línea Celular , Supervivencia Celular/genética , Supervivencia Celular/fisiología , Ensayo de Inmunoadsorción Enzimática , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Inmunohistoquímica , Recién Nacido , Interleucina-1/genética , Embarazo , Nacimiento Prematuro/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética , Transducción de Señal/fisiologíaRESUMEN
Pneumolysin (Ply) and its variants are protective against pneumococcal infections in animal models, and as a Toll-like receptor 4 agonist, pneumolysin has been reported to be a mucosal adjuvant. DnaJ has been approved as a useful candidate vaccine protein; we therefore designed novel fusion proteins of DnaJ with a form of Ply that has a deletion of A146 (ΔA146Ply-DnaJ [the C terminus of ΔA146Ply connected with the N terminus of DnaJ] and DnaJ-ΔA146Ply [the C terminus of DnaJ connected with the N terminus of ΔA146Ply]) to test whether they are protective against focal and lethal pneumococcal infections and their potential protective mechanisms. The purified proteins were used to intranasally immunize the animals without additional adjuvant. Immunization with DnaJ-ΔA146Ply or DnaJ plus ΔA146Ply (Ply with a single deletion of A146) could significantly reduce S. pneumoniae colonization in the nasopharynx and lung relative with DnaJ alone. Additionally, we observed the best protection for DnaJ-ΔA146Ply-immunized mice after challenge with lethal doses of S. pneumoniae strains, which was comparable to that achieved by PPV23. Mice immunized with DnaJ-ΔA146Ply produced significantly higher levels of anti-DnaJ IgG in serum and secretory IgA (sIgA) in saliva than those immunized with DnaJ alone. The production of IL-17A was also striking in DnaJ-ΔA146Ply-immunized mice. IL-17A knockout (KO) mice did not benefit from DnaJ-ΔA146Ply immunization in colonization experiments, and sIgA production was impaired in IL-17A KO mice. Collectively, our results indicate a mucosal adjuvant potential for ΔA146Ply and that, without additional adjuvant, DnaJ-ΔA146Ply fusion protein exhibits extensive immune stimulation and is effective against pneumococcal challenges, properties which are partially attributed to the IL-17A-mediated immune responses.
Asunto(s)
Interleucina-17/inmunología , Infecciones Neumocócicas/inmunología , Vacunas Neumococicas/inmunología , Proteínas Recombinantes de Fusión/inmunología , Streptococcus pneumoniae/inmunología , Administración Intranasal , Animales , Anticuerpos Antibacterianos/análisis , Proteínas Bacterianas/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Femenino , Inmunidad Mucosa/inmunología , Inmunoglobulinas/sangre , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infecciones Neumocócicas/prevención & control , Vacunas Neumococicas/administración & dosificación , Proteínas Recombinantes de Fusión/administración & dosificación , Proteínas Recombinantes de Fusión/genéticaRESUMEN
PURPOSE: To investigate the effects of IL-27 on human trophoblasts and the underlying regulatory signaling mechanisms in preeclampsia. METHODS: The expression of IL-27 and IL-27 receptor (WSX-1) was studied in the placenta or sera from patients with preeclampsia. In vitro, we investigated the effects of IL-27 alone or in combination with inflammatory cytokine tumor necrosis factor (TNF-α) on the proinflammatory activation of human trophoblast cells (HTR-8/SVneo) and the underlying intracellular signaling molecules. RESULTS: The expression of IL-27 and IL-27 receptor α (WSX-1) was significantly elevated in the trophoblastic cells from the placenta of patients with preeclampsia compared with control specimens. In vitro, IL-27 could induce the expression of inflammatory factors IFN-γ-inducible protein 10 (CXCL10/IP-10) and IL-6 in trophoblasts, and a synergistic effect was observed in the combined treatment of IL-27 and TNF-α on the release of IP-10 and IL-6. Furthermore, the production of IP-10 and IL-6 stimulated by IL-27 was differentially regulated by intracellular activation of phosphatidylinositol 3-OH kinase-AKT, p38MAPK, and JAK/STAT pathways. CONCLUSIONS: These results provide a new insight into the IL-27-activated immunopathological effects mediated by distinct intracellular signal transduction molecules in preeclampsia.
Asunto(s)
Quimiocina CXCL10/metabolismo , Interleucina-6/metabolismo , Interleucinas/metabolismo , Preeclampsia/enzimología , Trofoblastos/enzimología , Adulto , Línea Celular , Femenino , Humanos , Inflamación , Interferón gamma/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Polimorfismo Genético , Embarazo , Tercer Trimestre del Embarazo , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
Premature rupture of membrane (PROM) refers to the rupture of membranes before the onset of labor which increases the risk of perinatal morbidity and mortality. Recently, circular RNAs (circRNAs) have emerged as promising regulators of diverse diseases. However, the circRNA expression profiles and potential circRNA-miRNA-mRNA regulatory mechanisms in PROM remain enigmatic. In this study, we displayed the expression profiles of circRNAs and mRNAs in plasma and fetal membranes of PROM and normal control (NC) groups based on circRNA microarray, the Gene Expression Omnibus database, and NCBI's Sequence Read Archive. A total of 1,459 differentially expressed circRNAs (DECs) in PROM were identified, with 406 upregulated and 1,053 downregulated. Then, we constructed the circRNA-miRNA-mRNA network in PROM, encompassing 22 circRNA-miRNA pairs and 128 miRNA-mRNA pairs. Based on the analysis of gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and gene set enrichment analysis (GSEA), DECs were implicated in immune-related pathways, with certain alterations persisting even postpartum. Notably, 11 host genes shared by DECs of fetal membrane tissue and prenatal plasma in PROM were significantly implicated in inflammatory processes and extracellular matrix regulation. Our results suggest that structurally stable circRNAs may predispose to PROM by mediating systemic immune imbalances, including peripheral leukocyte disorganization, local immune imbalance at the maternal-fetal interface, and local collagen disruption. This is the first time to decipher a landscape on circRNAs of PROM, reveals the pathogenic cause of PROM from the perspective of circRNA, and opens up a new direction for the diagnosis and treatment of PROM.
Asunto(s)
Rotura Prematura de Membranas Fetales , ARN Circular , ARN Mensajero , ARN Circular/genética , ARN Circular/metabolismo , Humanos , Embarazo , Rotura Prematura de Membranas Fetales/genética , Femenino , ARN Mensajero/genética , ARN Mensajero/metabolismo , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , MicroARNs/genética , MicroARNs/metabolismo , Ontología de Genes , Adulto , Regulación de la Expresión Génica , Transcriptoma/genéticaRESUMEN
Preeclampsia (PE) is a pregnancy-related disorder that is a leading cause of maternal death. The failure of spiral artery remodeling due to insufficient trophoblast migration and invasion is critical in the pathogenesis of PE. Recently, the CC motif chemokine ligand 21 (CCL21) has been widely linked to cancer cell invasion and migration. However, their potential mechanisms are still unknown. In this study, we found that CCL21 expression was significantly lower in the PE group than that in the control group. In vitro experiments revealed that recombinant CCL21 could promote trophoblast cell epithelial-to-mesenchymal transitions (EMTs) and improve migration and invasion. Furthermore, an inhibitor of the ERK1/2 signaling pathway inhibited the CCL21-induced EMT process. Finally, a PE mouse model was established using the NOS inhibitor L-NAME, and we obtained similar results, with downregulated CCL21 and EMT biomarkers and upregulated CCR7. Taken together, these findings suggest that the CCL21/CCR7 axis influences EMT by activating the ERK1/2 signaling pathway, thereby affecting trophoblast cell migration and invasion, which may play a crucial role in the pathogenesis of PE.
RESUMEN
Introduction: Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-specific liver disease associated with elevated bile acids in the blood. Diagnosis typically only occurs after the manifestation of clinical symptoms and the metabolic mechanisms underlying its development remain unclear. The aim of this study was to investigate potential specific metabolites and the underlying metabolic changes occurring during the development of ICP in the maternal plasma and hair metabolomes of women diagnosed with either ICP or having a healthy pregnancy. Methods: A total of 35 Chinese women with ICP and 42 healthy pregnancies were enrolled in our study. Plasma and hair samples, total bile acid levels (TBA), alanine transaminase levels (ALT), aspartate aminotransferase levels (AST), and additional clinical information were collected during the third trimester. Metabolites from maternal plasma and hair segments collected pre-conception and analyzed using gas chromatography-mass spectrometry (GC-MS). Results: Three plasma metabolites (p < 0.05, q < 0.38) and 21 hair metabolites (p < 0.05, q < 0.05) were significantly different between ICP and healthy pregnancies. A combination of the eight most significant hair metabolites in a multivariate receiver operating characteristic curve model showed the best area under the curve (AUC) was 0.885, whereas the highest AUC using metabolites from plasma samples was only 0.74. Metabolic pathway analysis revealed 32 pathways were significantly (p and q values < 0.05) affected in the hair samples of patients with ICP. Pathways associated with glutathione metabolism and ABC transporters were affected. No metabolic pathways were significantly affected in plasma. Discussion: Overall, this study showed that the hair metabolome could be more useful than the plasma metabolome for distinguishing ICP from normal pregnancy.
Asunto(s)
Colestasis Intrahepática , Metaboloma , Complicaciones del Embarazo , Embarazo , Humanos , Femenino , Colestasis Intrahepática/diagnóstico , CabelloRESUMEN
Introduction: There is an urgent need to find novel stable cell-free fetal (cff-) RNA in the maternal circulation to facilitate the advance of non-invasive prenatal testing (NIPT) to more effectively avoid birth defects. Methods: CircRNA microarray was used to detect the cff-circRNA in plasma. Results: There were cff-circRNAs from the fetus in the peripheral blood of pregnant women and they persisted even until at least 24 h after delivery. In addition, we found that cff-circRNA might have a specific expression pattern in gestational disease. Conclusions: We demonstrated the presence of cff-circRNA in the maternal circulation, which may shed new light on the development of NIPT.
RESUMEN
This study aimed to investigate whether interleukin-27 (IL-27) activates maternal peripheral blood mononuclear cells (PBMCs) and induces inflammatory responses in amniotic epithelial cells in preterm labour (PL). The expression of IL-27p28, EBI3 and IL-27Rα was compared in maternal PBMCs of the PL, term labour (TL) and term not in labour (TNL) groups. The relationship between IL-27 and molecules associated with PBMC activation was investigated using bioinformatic and quantitative reverse transcription polymerase chain reaction (qRT-PCR) analyses. We investigated the inflammatory effects of IL-27 in PBMCs and its underlying mechanisms in vitro. In addition, we treated amniotic epithelial cells (WISH cells) with a PBMC-conditioned medium to identify the inflammatory effects of IL-27-treated PBMCs in amniotic epithelial cells. The expression of IL-27p28 and IL-27Rα in PBMCs of the PL group was higher than that in the TL/TNL groups. Bioinformatic analysis revealed that IL-27 was positively correlated with IFNG, IL6, IL1ß, CXCL10 and ICAM1 in the whole blood samples of pregnant women in the PL group, which was confirmed using qRT-PCR. Furthermore, rhIL-27 promoted the expression of Th1 cell-related molecules (T-bet, IFN-γ and ICAM-1) and proinflammatory cytokines (IL-6 and IL-1ß) in PBMCs in vitro, which was partially mediated by the JAK2/STAT1 pathway. In addition, it enhanced the expression of IL-27p28, EBI3 and IL-27Rα in PBMCs. Moreover, the expression of IL-6, IL-1ß and TNF-α in WISH cells was significantly increased by the conditional medium derived from IL-27-treated PBMCs. IL-27 upregulated the expression of Th1 cell-related molecules and proinflammatory cytokines in PBMCs partially mediated by the JAK2/STAT1 pathway. Inflammatory responses were induced in WISH cells by a conditional medium derived from IL-27-treated PBMCs. Therefore, IL-27 may contribute to PL by promoting inflammation in maternal PBMCs and amniotic epithelial cells.
Asunto(s)
Interleucina-27 , Trabajo de Parto Prematuro , Citocinas/metabolismo , Femenino , Humanos , Recién Nacido , Interleucinas , Leucocitos Mononucleares/metabolismo , Trabajo de Parto Prematuro/metabolismo , Embarazo , Síndrome de Respuesta Inflamatoria Sistémica/metabolismoRESUMEN
Preterm birth (PTB) is the leading cause of neonatal death. The essential strategy to prevent PTB is the accurate identification of threatened preterm labor (TPTL) women who will have PTB in a short time (< 7 days). Here, we aim to propose a clinical model to contribute to the effective prediction, precise prevention, and personalized medical treatment for PTB < 7 days in TPTL women through bioinformatics analysis and prospective cohort studies. In this study, the 1090 key genes involved in PTB < 7 days in the peripheral blood of TPTL women were ascertained using WGCNA. Based on this, the biological basis of immune-inflammatory activation (e.g., IFNγ and TNFα signaling) as well as immune cell disorders (e.g., monocytes and Th17 cells) in PTB < 7 days were revealed. Then, four core genes (JOSD1, IDNK, ZMYM3, and IL1B) that best represent their transcriptomic characteristics were screened by SVM and LASSO algorithm. Therefore, a prediction model with an AUC of 0.907 was constructed, which was validated in a larger population (AUC = 0.783). Moreover, the predictive value (AUC = 0.957) and clinical feasibility of this model were verified through the clinical prospective cohort we established. In conclusion, in the context of Predictive, Preventive, and Personalized Medicine (3PM), we have developed and validated a model to predict PTB < 7 days in TPTL women. This is promising to greatly improve the accuracy of clinical prediction, which would facilitate the personalized management of TPTL women to precisely prevent PTB < 7 days and improve maternal-fetal outcomes.
RESUMEN
The objective of this study is to investigate the effect of IL-27 on Th1 cells infiltration in human fetal membranes (FMs) in preterm labor (PL). The expression of Th1 cells specific transcription factor (T-bet), Th1 cells infiltration related molecules (CXCL9, CXCL10, CXCL11, and ICAM-1), and IL-27 receptor α subunit (IL-27Rα) was compared in human FMs from pregnant women in PL group and term labor (TL) group. In vitro, rhIL-27 was added to the culture medium of amniotic epithelial cells (WISH cells) to detect the expression of CXCL9, CXCL10, CXCL11, and ICAM-1. Furthermore, the underlying signaling pathway was detected by single-sample gene set enrichment analysis and western blot analysis. The expression of T-bet and CXCL9, CXCL10, CXCL11, and ICAM-1 as well as IL-27Rα was higher in human FMs from PL group than TL group. In vitro, rhIL-27 could upregulate the expression of CXCL9, CXCL10, CXCL11, and ICAM-1 in WISH cells. Using gene-set enrichment analysis of FMs, JAK/STAT signaling pathway was found to be activated by IL-27 signaling in PL. Using western blot analysis, JAK2/STAT1/STAT3 signaling pathway was confirmed to be enhanced in rhIL-27 treated WISH cells. In addition, AG490 (JAK2 inhibitor) could inhibit the secretion of CXCL9, CXCL10, and CXCL11 in WISH cells stimulated by rhIL-27. Our results suggested that IL-27 may promote Th1 cells infiltration in human FMs in PL, by promoting the expression of CXCL9, CXCL10, and CXCL11 at least partly through JAK2/STAT1/STAT3 signaling pathway.
Asunto(s)
Interleucina-27 , Trabajo de Parto Prematuro , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Membranas Extraembrionarias/metabolismo , Femenino , Humanos , Recién Nacido , Molécula 1 de Adhesión Intercelular , Trabajo de Parto Prematuro/metabolismo , Embarazo , Células TH1/metabolismoRESUMEN
Background: Preterm birth (PTB) is a multifactorial syndrome that seriously threatens the health of pregnant women and babies worldwide. Recently, circular RNAs (circRNAs) have been understood as important regulators of various physiological and pathological processes. However, the expression pattern and potential roles of circRNAs in PTB are largely unclear. Methods: In this study, we extracted and analyzed the circRNA expression profiles in maternal and fetal samples of preterm and term pregnancies, including maternal plasma, maternal monocytes, myometrium, chorion, placenta, and cord blood. We identified the circRNAs which is associated with PTB in different tissues and explored their relationships from the perspective of the overall maternal-fetal system. Furthermore, co-expression analysis of circRNAs and mRNAs, target microRNAs (miRNAs), and RNA-binding proteins (RBPs), provided new clues about possible mechanisms of circRNA function in PTB. In the end, we investigated the potential special biofunctions of circRNAs in different tissues and their common features and communication in PTB. Results: Significant differences in circRNA types and expression levels between preterm and term groups have been proved, as well as between tissues. Nevertheless, there were still some PTB-related differentially expressed circRNAs (DECs) shared by these tissues. The functional enrichment analysis showed that the DECs putatively have important tissue-specific biofunctions through their target miRNA and co-expressed mRNAs, which contribute to the signature pathologic changes of each tissue within the maternal-fetal system in PTB (e.g., the contraction of the myometrium). Moreover, DECs in different tissues might have some common biological activities, which are mainly the activation of immune-inflammatory processes (e.g., interleukin1/6/8/17, chemokine, TLRs, and complement). Conclusions: In summary, our data provide a preliminary blueprint for the expression and possible roles of circRNAs in PTB, which lays the foundation for future research on the mechanisms of circRNAs in PTB.
Asunto(s)
MicroARNs , Nacimiento Prematuro , Femenino , Perfilación de la Expresión Génica , Humanos , Recién Nacido , MicroARNs/genética , MicroARNs/metabolismo , Embarazo , Nacimiento Prematuro/genética , ARN Circular/genética , ARN Mensajero/genéticaRESUMEN
Preterm labor (PTL) is a multifactorial syndrome that results in birth prior to 37 weeks of gestation. However, the specific molecular mechanisms underlying this condition have yet to be elucidated. Previous research demonstrated that the abnormal expression of IL-27, and its receptors, played a role in the pathophysiology of preterm labor. In the present study, we established a Lipopolysaccharide (LPS)-stimulated, infection-induced, preterm mouse model based on wild-type C57BL/6 mice and WSX-1-/-C57BL/6 mice. WSX-1 knockdown led to a significant delay in birth by 11.32 ± 2.157h. In addition, compared with wild-type C57B/6 mice, the expression levels of IFN-γ, IL-1ß, IL-6, TNF-α, and CXCL10, in the fetal membrane and myometrium of WSX-1-/-mice were significantly lower, particularly in the myometrium. We also confirmed similar pro-inflammatory effects arising from IL-27 in human amniotic cell line (WISH) and human myometrial smooth muscle cell line (HMSMC). Once stimulated by LPS, the pro-inflammatory action exhibited a synergistic effect and appeared to be time-dependent. Finally, we demonstrated that LY3214996, an inhibitor of the ERK pathway, significantly inhibited the pro-inflammatory effect mediated by IL-27. Overall, our data confirmed that the inflammatory effect mediated by the IL-27/IFN-r/ERK axis is involved in preterm labor. Our findings, therefore, provide an enhancement in our etiological understanding of the mechanisms underlying PTL.
Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/fisiología , Inflamación/etiología , Interleucina-27/fisiología , Trabajo de Parto Prematuro/inmunología , Animales , Células Cultivadas , Femenino , Humanos , Interferón gamma/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Ratones , Ratones Endogámicos C57BL , Embarazo , Receptores de Interleucina/fisiología , Útero/inmunologíaRESUMEN
Interleukin-27 (IL-27), a member of the IL-6/IL-12 family, has diverse regulatory functions in various immune responses, and is recognised as a potent agonist and antagonist of CD4+T cells in different contexts. However, this dual role and underlying mechanisms have not been completely defined. In the present review, we summarise the dual role of IL-27 in CD4+T cells. In particular, we aimed to decipher its mechanism to better understand the context-dependent function of IL-27 in CD4+T cells. Furthermore, we propose a possible mechanism for the dual role of IL-27. This may be helpful for the development of appropriate IL-27 treatments in various clinical settings.
Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Interleucina-27/inmunología , Animales , HumanosRESUMEN
Preterm birth (PTB) is an immune-inflammatory disease that needs to be resolved. This study aimed to identify the role of interleukin-27 (IL-27), an immunomodulatory factor, in PTB and its associated mechanisms. Here, we analyzed the high-throughput of samples data from the maternal-fetal interface to the peripheral circulation obtained from public databases and reported that the elevated IL-27 was involved with the onset of PTB. Further bioinformatics analyses (e.g. GeneMANIA and GSEA) revealed that IL-27 overexpression in the peripheral circulation as well as maternal-fetal interface is related to the activation of the immune-inflammatory process represented by IFN-γ signaling, etc. In addition, IL-27 and immune infiltration correlation analysis demonstrated that IL-27 mediates this immune-inflammatory imbalance, plausibly mainly through monocyte-macrophage and neutrophils. This finding was further validated by analyzing additional datasets. Overall, this is the first study to elaborate on the role of IL-27-mediated immuno-inflammation in PTB from the perspective of bioinformatics, which may provide a novel strategy for the prevention and treatment of PTB.