Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Annu Rev Biomed Eng ; 25: 185-205, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37289556

RESUMEN

Penetrating neural electrodes provide a powerful approach to decipher brain circuitry by allowing for time-resolved electrical detections of individual action potentials. This unique capability has contributed tremendously to basic and translational neuroscience, enabling both fundamental understandings of brain functions and applications of human prosthetic devices that restore crucial sensations and movements. However, conventional approaches are limited by the scarce number of available sensing channels and compromised efficacy over long-term implantations. Recording longevity and scalability have become the most sought-after improvements in emerging technologies. In this review, we discuss the technological advances in the past 5-10 years that have enabled larger-scale, more detailed, and longer-lasting recordings of neural circuits at work than ever before. We present snapshots of the latest advances in penetration electrode technology, showcase their applications in animal models and humans, and outline the underlying design principles and considerations to fuel future technological development.


Asunto(s)
Longevidad , Neurociencias , Animales , Humanos , Electrodos , Encéfalo/fisiología , Potenciales de Acción/fisiología , Electrodos Implantados
2.
Biophys J ; 111(2): 386-394, 2016 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-27463140

RESUMEN

Emerging evidence indicates that mitochondrial flashes (mitoflashes) are highly conserved elemental mitochondrial signaling events. However, which signal controls their ignition and how they are integrated with other mitochondrial signals and functions remain elusive. In this study, we aimed to further delineate the signal components of the mitoflash and determine the mitoflash trigger mechanism. Using multiple biosensors and chemical probes as well as label-free autofluorescence, we found that the mitoflash reflects chemical and electrical excitation at the single-organelle level, comprising bursting superoxide production, oxidative redox shift, and matrix alkalinization as well as transient membrane depolarization. Both electroneutral H(+)/K(+) or H(+)/Na(+) antiport and matrix proton uncaging elicited immediate and robust mitoflash responses over a broad dynamic range in cardiomyocytes and HeLa cells. However, charge-uncompensated proton transport, which depolarizes mitochondria, caused the opposite effect, and steady matrix acidification mildly inhibited mitoflashes. Based on a numerical simulation, we estimated a mean proton lifetime of 1.42 ns and diffusion distance of 2.06 nm in the matrix. We conclude that nanodomain protons act as a novel, to our knowledge, trigger of mitoflashes in energized mitochondria. This finding suggests that mitoflash genesis is functionally and mechanistically integrated with mitochondrial energy metabolism.


Asunto(s)
Mitocondrias/metabolismo , Protones , Animales , Metabolismo Energético/efectos de los fármacos , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Ionóforos/farmacología , Masculino , Mitocondrias/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
3.
Cell Rep ; 42(6): 112554, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37235473

RESUMEN

Intracortical microstimulation (ICMS) enables applications ranging from neuroprosthetics to causal circuit manipulations. However, the resolution, efficacy, and chronic stability of neuromodulation are often compromised by adverse tissue responses to the indwelling electrodes. Here we engineer ultraflexible stim-nanoelectronic threads (StimNETs) and demonstrate low activation threshold, high resolution, and chronically stable ICMS in awake, behaving mouse models. In vivo two-photon imaging reveals that StimNETs remain seamlessly integrated with the nervous tissue throughout chronic stimulation periods and elicit stable, focal neuronal activation at low currents of 2 µA. Importantly, StimNETs evoke longitudinally stable behavioral responses for over 8 months at a markedly low charge injection of 0.25 nC/phase. Quantified histological analyses show that chronic ICMS by StimNETs induces no neuronal degeneration or glial scarring. These results suggest that tissue-integrated electrodes provide a path for robust, long-lasting, spatially selective neuromodulation at low currents, which lessens risk of tissue damage or exacerbation of off-target side effects.


Asunto(s)
Corteza Somatosensorial , Ratones , Animales , Corteza Somatosensorial/fisiología , Electrodos , Estimulación Eléctrica/métodos , Electrodos Implantados
4.
bioRxiv ; 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36865195

RESUMEN

Intracortical microstimulation (ICMS) enables applications ranging from neuroprosthetics to causal circuit manipulations. However, the resolution, efficacy, and chronic stability of neuromodulation is often compromised by the adverse tissue responses to the indwelling electrodes. Here we engineer ultraflexible stim-Nanoelectronic Threads (StimNETs) and demonstrate low activation threshold, high resolution, and chronically stable ICMS in awake, behaving mouse models. In vivo two-photon imaging reveals that StimNETs remain seamlessly integrated with the nervous tissue throughout chronic stimulation periods and elicit stable, focal neuronal activation at low currents of 2 µA. Importantly, StimNETs evoke longitudinally stable behavioral responses for over eight months at markedly low charge injection of 0.25 nC/phase. Quantified histological analysis show that chronic ICMS by StimNETs induce no neuronal degeneration or glial scarring. These results suggest that tissue-integrated electrodes provide a path for robust, long-lasting, spatially-selective neuromodulation at low currents which lessen risks of tissue damage or exacerbation of off-target side-effects.

5.
Biomaterials ; 291: 121905, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36403326

RESUMEN

Flexible neural electrodes improve the recording longevity and quality of individual neurons by promoting tissue-electrode integration. However, the intracortical implantation of flexible electrodes inevitably induces tissue damage. Understanding the longitudinal neural and vascular recovery following the intracortical implantation is critical for the ever-growing applications of flexible electrodes in both healthy and disordered brains. Aged animals are of particular interest because they play a key role in modeling neurological disorders, but their tissue-electrode interface remains mostly unstudied. Here we integrate in-vivo two-photon imaging and electrophysiological recording to determine the time-dependent neural and vascular dynamics after the implantation of ultraflexible neural electrodes in aged mice. We find heightened angiogenesis and vascular remodeling in the first two weeks after implantation, which coincides with the rapid increase in local field potentials and unit activities detected by electrophysiological recordings. Vascular remodeling in shallow cortical layers preceded that in deeper layers, which often lasted longer than the recovery of neural signals. By six weeks post-implantation vascular abnormalities had subsided, resulting in normal vasculature and microcirculation. Putative cell classification based on firing pattern and waveform shows similar recovery time courses in fast-spiking interneurons and pyramidal neurons. These results elucidate how structural damages and remodeling near implants affecting recording efficacy, and support the application of ultraflexible electrodes in aged animals at minimal perturbations to endogenous neurophysiology.


Asunto(s)
Neuronas , Remodelación Vascular , Animales , Ratones , Electrodos , Encéfalo , Interneuronas
6.
Neurophotonics ; 9(3): 032204, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35036472

RESUMEN

Significance: Electrophysiological recording and optical imaging are two prevalent neurotechnologies with complementary strengths, the combined application of which can significantly improve our capacity in deciphering neural circuits. Flexible electrode arrays can support longitudinal optical imaging in the same brain region, but their mechanical flexibility makes surgical preparation challenging. Here, we provide a step-by-step protocol by which an ultraflexible nanoelectronic thread is co-implanted with a cranial window in a single surgery to enable chronic, dual-modal measurements. Aim: The method uses 1 - µ m -thick polymer neural electrodes which conform to the site of implantation. The mechanical flexibility of the probe allows bending without breaking and enables long-lasting electrophysiological recordings of single-unit activities and concurrent, high-resolution optical imaging through the cranial window. Approach: The protocol describes methods and procedures to co-implant an ultraflexible electrode array and a glass cranial window in the mouse neocortex. The implantation strategy includes temporary attachment of flexible electrodes to a retractable tungsten-microwire insertion shuttle, craniotomy, stereotaxic insertion of the electrode array, skull fixation of the cranial window and electrode, and installation of a head plate. Results: The resultant implant allows simultaneous interrogation of brain activity both electrophysiologically and optically for several months. Importantly, a variety of optical imaging modalities, including wide-field fluorescent imaging, two-photon microscopy, and functional optical imaging, can be readily applied to the specific brain region where ultraflexible electrodes record from. Conclusions: The protocol describes a method for co-implantation of ultraflexible neural electrodes and a cranial window for chronic, multimodal measurements of brain activity in mice. Device preparation and surgical implantation are described in detail to guide the adaptation of these methods for other flexible neural implants and cranial windows.

7.
Nat Biomed Eng ; 6(6): 754-770, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35314800

RESUMEN

Neural circuitry is typically modulated via invasive brain implants and tethered optical fibres in restrained animals. Here we show that wide-field illumination in the second near-infrared spectral window (NIR-II) enables implant-and-tether-free deep-brain stimulation in freely behaving mice with stereotactically injected macromolecular photothermal transducers activating neurons ectopically expressing the temperature-sensitive transient receptor potential cation channel subfamily V member 1 (TRPV1). The macromolecular transducers, ~40 nm in size and consisting of a semiconducting polymer core and an amphiphilic polymer shell, have a photothermal conversion efficiency of 71% at 1,064 nm, the wavelength at which light attenuation by brain tissue is minimized (within the 400-1,800 nm spectral window). TRPV1-expressing neurons in the hippocampus, motor cortex and ventral tegmental area of mice can be activated with minimal thermal damage on wide-field NIR-II illumination from a light source placed at distances higher than 50 cm above the animal's head and at an incident power density of 10 mW mm-2. Deep-brain stimulation via wide-field NIR-II illumination may open up opportunities for social behavioural studies in small animals.


Asunto(s)
Iluminación , Polímeros , Animales , Encéfalo , Ratones , Temperatura , Transductores
8.
ACS Nano ; 13(7): 7920-7929, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31251581

RESUMEN

An electronic "smart" contact lens device with high gas permeability and optical transparency, as well as mechanical compliance and robustness, offers daily wear capability in eye interfacing and can have broad applications ranging from ocular diagnosis to augmented reality. Most existing contact lens electronics utilize gas-impermeable substrates, electronic components, and interfacial adhesion layers, which impedes them from applications requiring continuous daily wear. Here we report on the design and fabrication of an eye interfacing device with a commercial ocular contact lens as the substrate, metal-coated nanofiber mesh as the conductor, and in situ electrochemically deposited poly(3,4-ethylenedioxythiophene) (PEDOT) /poly(styrene sulfonate) (PSS) as the adhesion material. This hydrogel contact lens device shows high gas permeability, wettability, and level of hydration, in addition to excellent optical transparency, mechanical compliance, and robustness. Using a rabbit model, we found that the animals wearing these hydrogel contact lens devices continuously for 12 hours showed a level of corneal fluorescein staining comparable to those wearing pure hydrogel contact lenses for same period of time, with no obvious corneal abrasion or irritation, indicating their high level of safety for continuous daily wear. Finally, full-field electroretinogram (ERG) recordings on rabbits were carried out to demonstrate the functionality of this device. We believe that the strategy of integrating nanofiber mesh-based electronic components demonstrated here can offer a general platform for hydrogel electronics with the advantages of preserving the physiological and mechanical properties of the hydrogel, thus enabling seamless integration with biological tissues and providing various wearable or implantable sensors with improved biocompatibility for health monitoring or medical treatment.


Asunto(s)
Lentes de Contacto , Córnea/química , Oro/química , Hidrogeles/química , Nanofibras/química , Animales , Conductividad Eléctrica , Electrodos , Fluoresceína/química , Gases/química , Tamaño de la Partícula , Conejos , Propiedades de Superficie
9.
Nat Commun ; 9(1): 2334, 2018 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-29899545

RESUMEN

Visual electrophysiology measurements are important for ophthalmic diagnostic testing. Electrodes with combined optical transparency and softness are highly desirable, and sometimes indispensable for many ocular electrophysiology measurements. Here we report the fabrication of soft graphene contact lens electrodes (GRACEs) with broad-spectrum optical transparency, and their application in conformal, full-cornea recording of electroretinography (ERG) from cynomolgus monkeys. The GRACEs give higher signal amplitude than conventional ERG electrodes in recordings of various full-field ERG responses. High-quality topographic mapping of multifocal ERG under simultaneous fundus monitoring is realized. A conformal and tight interface between the GRACEs and cornea is revealed. Neither corneal irritation nor abnormal behavior of the animals is observed after ERG measurements with GRACEs. Furthermore, spatially resolved ERG recordings on rabbits with graphene multi-electrode array reveal a stronger signal at the central cornea than the periphery. These results demonstrate the unique capabilities of the graphene-based electrodes for in vivo visual electrophysiology studies.


Asunto(s)
Lentes de Contacto Hidrofílicos , Electrodos , Electrorretinografía/instrumentación , Animales , Córnea/fisiología , Electrorretinografía/métodos , Diseño de Equipo , Femenino , Grafito , Macaca fascicularis , Masculino , Dispositivos Ópticos , Fenómenos Ópticos , Conejos
10.
Sci Bull (Beijing) ; 62(15): 1074-1080, 2017 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36659334

RESUMEN

A foundation of the modern technology that uses single-crystal silicon has been the growth of high-quality single-crystal Si ingots with diameters up to 12 inches or larger. For many applications of graphene, large-area high-quality (ideally of single-crystal) material will be enabling. Since the first growth on copper foil a decade ago, inch-sized single-crystal graphene has been achieved. We present here the growth, in 20min, of a graphene film of (5×50)cm2 dimension with >99% ultra-highly oriented grains. This growth was achieved by: (1) synthesis of metre-sized single-crystal Cu(111) foil as substrate; (2) epitaxial growth of graphene islands on the Cu(111) surface; (3) seamless merging of such graphene islands into a graphene film with high single crystallinity and (4) the ultrafast growth of graphene film. These achievements were realized by a temperature-gradient-driven annealing technique to produce single-crystal Cu(111) from industrial polycrystalline Cu foil and the marvellous effects of a continuous oxygen supply from an adjacent oxide. The as-synthesized graphene film, with very few misoriented grains (if any), has a mobility up to ∼23,000cm2V-1s-1 at 4K and room temperature sheet resistance of ∼230Ω/□. It is very likely that this approach can be scaled up to achieve exceptionally large and high-quality graphene films with single crystallinity, and thus realize various industrial-level applications at a low cost.

11.
Sci China Life Sci ; 57(5): 495-501, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24699914

RESUMEN

The mitochondria play essential roles in both intracellular calcium and reactive oxygen species signaling. As a newly discovered universal and fundamental mitochondrial phenomenon, superoxide flashes reflect transient bursts of superoxide production in the matrix of single mitochondria. Whether and how the superoxide flash activity is regulated by mitochondrial calcium remain largely unknown. Here we demonstrate that elevating mitochondrial calcium either by the calcium ionophore ionomycin or by increasing the bathing calcium in permeabilized HeLa cells increases superoxide flash incidence, and inhibition of the mitochondrial calcium uniporter activity abolishes the flash response. Quantitatively, the superoxide flash incidence is correlated to the steady-state mitochondrial calcium elevation with 1.7-fold increase per 1.0 ΔF/F 0 of Rhod-2 signal. In contrast, large mitochondrial calcium transients (e.g., peak ΔF/F 0 ∼ 2.8, duration ∼ 2 min) in the absence of steady-state elevations failed to alter the flash activity. These results indicate that physiological levels of sustained, but not transient, mitochondrial calcium elevation acts as a potent regulator of superoxide flashes, but its mechanism of action likely involves a multi-step, slow-onset process.


Asunto(s)
Calcio/metabolismo , Mitocondrias/metabolismo , Superóxidos/metabolismo , Compuestos de Anilina , Canales de Calcio/genética , Canales de Calcio/metabolismo , Ionóforos de Calcio/farmacología , Señalización del Calcio/efectos de los fármacos , Colorantes Fluorescentes , Técnicas de Silenciamiento del Gen , Células HeLa , Compuestos Heterocíclicos con 3 Anillos , Humanos , Ionomicina/farmacología , Mitocondrias/efectos de los fármacos , ARN Interferente Pequeño/genética , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Xantenos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA