RESUMEN
Direct nitrogen oxidation into nitrate under ambient conditions presents a promising strategy for harsh and multistep industrial processes. However, the dynamic structural evolution of active sites in surface reactions constitutes a highly intricate endeavor and remains in its nascent stage. Here, we constructed a Bi24O31Cl10 material with moiré superlattice structure (BCMS) for direct piezo-photocatalytic oxidation of nitrogen into nitrate. Excitingly, BCMS achieved excellent nitric acid production (15.44 mg g-1 h-1) under light and pressure conditions. Detailed experimental results show that the unique structure extracts the local strain tensor from the constricting Bi-Bi bond and Bi-O bond for internal structural reconstruction, which promotes the formation of electron and reactive molecule vortexes to facilitate charge transfer as well as N2 and O2 adsorption. Ultimately, these initiatives strengthen electron exchange between the superoxide radical and nitrogen as well as the binding strength of multiple intermediates, which swayingly adjusts the reaction path and energy barriers.
RESUMEN
The synthesis of multifunctionalized dihydropyridinones from aldehydes and ketones involves at least a three-step process, making route shortening a challenging task, especially in achieving a one-pot four-component synthesis via aldehydes and ketones precondensation. Herein, we discovered a [1 + 2 + 1 + 2] four-component domino cyclization reaction, a novel concept in 4CRs with commercially available ketones and aldehydes, which by initially combining aldehydes and ketones with Meldrum's acid and ammonium acetate (NH4OAc), respectively, they give dihydropyridones (>110 examples). This transformation features inexpensive additives and readily available starting materials, making it appropriate for rapid access to relevant pharmaceutical molecules containing dihydropyridinone-derived heterocycles. Also these compounds can be conveniently converted into trisubstituted and tetrasubstituted pyridines.
RESUMEN
A Sb,N ligand (L-Sb) for Pd-catalyzed double N-arylation of primary amines was developed. This trivalent ligand L-Sb, containing a 5,6,7,12-tetrahydrodibenzo[c,f][1,5]azastibocine skeleton and stable under air and moisture, could be synthesized facilely on a gram scale from chlorostibine (1) and cyclopentylmagnesium bromide. L-Sb showed excellent catalytic performance in Pd2(dba)3-catalyzed double N-arylation of 2,2'-dibromo-1,1'-biphenyl (2) with primary amines (3), affording functionalized carbazoles in good yields. This Pd2(dba)3/L-Sb-catalyzed double N-arylation, the first example of the application of trivalent organostibines as a ligand in N-arylation, featured the following advantages: small catalyst loading, wide functional group tolerance, good yields, and ease of gram-scale synthesis.
RESUMEN
A novel and efficient protocol for the synthesis of diarylallyl-functionalized phosphonates, phosphinates, and phosphine oxides through the zinc-catalyzed dehydroxylative phosphorylation of allylic alcohols with P(III)-nucleophiles via a Michaelis-Arbuzov-type rearrangement is reported. A broad range of allylic alcohols and P(III)-nucleophiles (P(OR)3, ArP(OR)2, and Ar2P(OR)) are well tolerated in this reaction, and the expected dehydroxylative phosphorylation products could be synthesized with good to excellent yields under the optimal reaction conditions. The reaction can be easily scaled up at a gram-synthesis level. Furthermore, through the step-by-step control experiments, kinetic study experiments, and 31P NMR tracking experiments, we acquired insights into the reaction and proposed the possible mechanism for this transformation.
RESUMEN
OBJECTIVE: The aim of this study is to develop a nomogram model for predicting the occurrence of intramyocardial hemorrhage (IMH) in patients with Acute Myocardial Infarction (AMI) following Percutaneous Coronary Intervention (PCI). The model is constructed utilizing clinical data and the SYNTAX Score (SS), and its predictive value is thoroughly evaluated. METHODS: A retrospective study was conducted, including 216 patients with AMI who underwent Cardiac Magnetic Resonance (CMR) within a week post-PCI. Clinical data were collected for all patients, and their SS were calculated based on coronary angiography results. Based on the presence or absence of IMH as indicated by CMR, patients were categorized into two groups: the IMH group (109 patients) and the non-IMH group (107 patients). The patients were randomly divided in a 7:3 ratio into a training set (151 patients) and a validation set (65 patients). A nomogram model was constructed using univariate and multivariate logistic regression analyses. The predictive capability of the model was assessed using Receiver Operating Characteristic (ROC) curve analysis, comparing the predictive value based on the area under the ROC curve (AUC). RESULTS: In the training set, IMH post-PCI was observed in 78 AMI patients on CMR, while 73 did not show IMH. Variables with a significance level of P < 0.05 were screened using univariate logistic regression analysis. Twelve indicators were selected for multivariate logistic regression analysis: heart rate, diastolic blood pressure, ST segment elevation on electrocardiogram, culprit vessel, symptom onset to reperfusion time, C-reactive protein, aspartate aminotransferase, lactate dehydrogenase, creatine kinase, creatine kinase-MB, high-sensitivity troponin T (HS-TnT), and SYNTAX Score. Based on multivariate logistic regression results, two independent predictive factors were identified: HS-TnT (Odds Ratio [OR] = 1.61, 95% Confidence Interval [CI]: 1.21-2.25, P = 0.003) and SS (OR = 2.54, 95% CI: 1.42-4.90, P = 0.003). Consequently, a nomogram model was constructed based on these findings. The AUC of the nomogram model in the training set was 0.893 (95% CI: 0.840-0.946), and in the validation set, it was 0.910 (95% CI: 0.823-0.970). Good consistency and accuracy of the model were demonstrated by calibration and decision curve analysis. CONCLUSION: The nomogram model, constructed utilizing HS-TnT and SS, demonstrates accurate predictive capability for the risk of IMH post-PCI in patients with AMI. This model offers significant guidance and theoretical support for the clinical diagnosis and treatment of these patients.
Asunto(s)
Infarto del Miocardio , Intervención Coronaria Percutánea , Humanos , Intervención Coronaria Percutánea/efectos adversos , Nomogramas , Estudios Retrospectivos , Infarto del Miocardio/diagnóstico , Hemorragia/diagnóstico por imagen , Hemorragia/etiología , Hemorragia/epidemiologíaRESUMEN
BACKGROUND: With the increasing number of bariatric surgeries, the high incidence of postoperative nausea and vomiting (PONV) associated with this surgery has also gradually attracted attention. Among the common bariatric surgery methods, patients undergoing sleeve gastrectomy (SG) have the highest incidence of nausea and vomiting. The mechanism of occurrence of PONV is very complex. This study aims to explore the influencing factors of PONV in patients undergoing laparoscopic sleeve gastrectomy (LSG) and construct a nomogram prediction model based on these factors. METHODS: With the approval of the Ethics Committee, the electronic medical records of patients who underwent LSG from July 2022 to May 2023 were collected retrospectively. RESULTS: A total of 114 patients with complete medical records who underwent LSG from July 2022 to May 2023 were included in this study. Among them, 46 patients developed PONV, resulting in a PONV incidence rate of 40.4%. Multivariate logistic regression analysis revealed that female gender, the use of inhalation anesthesia, and operation time ≥ 120 min were risk factors for PONV in LSG. Additionally, the use of more than two kinds of antiemetic drugs was identified as a protective factor. Based on these factors, a nomogram model was constructed. CONCLUSION: PONV in patients undergoing LSG is related to gender, type of anesthesia, duration of surgery, and combination therapy with antiemetic drugs. The nomogram prediction model constructed in this study demonstrates high accuracy and discrimination in predicting the occurrence of PONV in patients undergoing LSG.
Asunto(s)
Antieméticos , Laparoscopía , Humanos , Femenino , Náusea y Vómito Posoperatorios/tratamiento farmacológico , Antieméticos/uso terapéutico , Estudios Retrospectivos , Gastrectomía/efectos adversos , Gastrectomía/métodos , Laparoscopía/efectos adversos , Laparoscopía/métodosRESUMEN
4-Sulfanyl-substituted 1,2,3-triazoles were provided regioselectively with good yields and broad scope via consecutive t-BuOK-promoted dephosphinylation of 1-phosphinyl-2-sulfanylethynes and copper-catalyzed azide-alkyne cycloadditions (CuAAC) with alkyl azides. Unsymmetrically substituted ditriazoles were successfully obtained using a tandem dephosphinylative CuAAC protocol with diazides. Direct CuAAC of the 1-phosphinyl-2-sulfanylethynes with azides afforded regioisomeric mixtures of 4-phosphinyl-5-sulfanyl- and 5-phosphinyl-4-sulfanyl-1,2,3-triazoles that were easily separable from one another. When the phosphinyl- and sulfanyl-substituted triazoles were treated with t-BuOK, the dephosphination proceeded smoothly, yielding the corresponding 5- and 4-sulfanyltriazoles, respectively. 5-(1-Aryl-1-hydroxymethyl)-4-sulfanyltriazoles were synthesized by stepwise treatment of 5-phosphinyl-4-sulfanyltriazole with MeMgBr and arylaldehydes. Additionally, Ph2P(O) and RS groups in the triazoles were easily converted to Ph2P and RSO2 by PhSiH3-reduction and m-CPBA-oxidation, respectively. Following the dephosphinylative CuAAC of 1-phosphinyl-2-(4-t-butylphenylsulfanyl)ethyne with aryl azides and m-CPBA-oxidation, potent antagonists of pregnane X receptor LC-58 and LC-59 were successfully produced.
RESUMEN
Recently, water promotion effects in the selective oxidation of benzyl alcohol to benzaldehyde have been experimentally recognized and identified. However, the effects of water on the photocatalytic selective oxidation of toluene into benzaldehyde remain elusive. In this work, the Ti3O9H6 clusters in different solvents (water and toluene solvent) are used to study the water-induced effects in photocatalytic oxidation reactions in kinetics and thermodynamics using density functional theory (DFT) calculations. In addition, the influences of the OH groups on catalysts (Ti-OH bonds) from photocatalytic water splitting are also considered. The results clearly demonstrate the water-induced double-edged sword effects in the photocatalytic selective oxidation of toluene. We expect that our work can not only shed light on the mechanisms of photocatalytic selective oxidation of toluene into benzaldehyde and other activation reactions of sp3 C-H bonds but also design and modulate highly efficient photocatalysts.
RESUMEN
A copper-catalyzed aerobic oxidative/decarboxylative phosphorylation of aryl acrylic acids with P(III)-nucleophiles via the Michaelis-Arbuzov rearrangement for the synthesis of ß-ketophosphine oxides, ß-ketophosphinates, and ß-ketophosphonates is reported. The present reaction could be conducted effectively without the use of a ligand and a base. Various kinds of aryl acrylic acids and P(III)-nucleophiles are tolerated in the transformation, generating the desired ß-keto-organophosphorus compounds as a valuable class of phosphorus-containing intermediates with good to excellent yields. In addition, the possible mechanism and kinetic studies for the reaction have been explored by step-by-step control experiments and competitive experiments, and the results proved that this transformation may follow second-order chemical kinetics as well as involve a radical process.
RESUMEN
A simple and efficient method for the ruthenium-catalyzed 1,6-hydroalkylation of para-quinone methides (p-QMs) with ketones via the in situ activation of C(sp3)-H bonds has been disclosed. Without the need for preactivation of the substrates and oxidant, a broad range of p-QMs and ketones are well tolerated, producing the expected 1,6-hydroalkylation products with moderate to good yields. Step-by-step control experiments and DFT calculation were conducted systematically to gain insights for the plausible reaction mechanism. This finding may have potential application in the selective diarylmethylation of ketones at the α-C position in organic synthesis.
RESUMEN
Core-shell photoanodes have shown great potential for photoelectrochemical (PEC) water oxidation. However, the construction of a high-quality interface between the core and shell, as well as a highly catalytic surface, remains a challenge. Herein, guided by computation, we present a BiVO4 photoanode coated with ZnCoFe polyphthalocyanine using pyrazine as a coordination agent. The bidirectional axial coordination of pyrazine plays a dual role by facilitating intimate interfacial contact between BiVO4 and ZnCoFe polyphthalocyanine, as well as regulating the electron density and spin configuration of metal sites in ZnCoFe phthalocyanine, thereby promoting the potential-limiting step of *OOH desorption. The resulting photoanode displayed a high photocurrent density of 5.7±0.1â mA cm-2 at 1.23â VRHE . This study introduces a new approach for constructing core-shell photoanodes, and uncovers the key role of pyrazine axial coordination in modulating the catalytic activity of metal phthalocyanine.
RESUMEN
A four-stage oscillating feedback millireactor with splitters (S-OFM) was designed to improve the mixing performance based on chaotic advection. Three-dimensional CFD simulations were used to investigate its flow characteristics and mixing performance, and the generation mechanisms of secondary flows were examined. The results show that the mixing index (MIcup) increased with the increase in the Reynolds number (Re), and MIcup could reach 99.8% at Re = 663. Poincaré mapping and Kolmogorov entropy were adopted to characterize the chaotic advection intensity, which indicates that there is a intensity increase with the increase in Re. In addition, the results of Villermaux-Dushman experiments demonstrate that S-OFM performs excellently, and the mixing time could reach 1.04 ms at Re = 2764. Finally, S-OFM was successfully used to synthesize CdS nanoparticles with cubic hexagonal phase junctions. At a flow rate of 180 mL/min, the average particle size was 10.5 nm and the particle size distribution was narrow (with a coefficient of variation of 0.14).
RESUMEN
R2PCF2H ligands and their R2P(O)CF2H precursors were synthesized from R2P(O)H with TMSCF3 by simply modulating the H2O concentration via deoxydifluoromethylation and difluoromethylation. The air sensitive R2PCF2H phosphines can be stabilized in Cu(I) clusters as ligands. Within these Cu(I) clusters, the Sonogashira cross-coupling reaction can proceed fast and efficiently using terminal alkynes and aryl iodides within 15 min at room temperature under air to give a variety of diaryl(alkyl)acetylenes in good yields (49 examples, yields of ≤99%). Six of the internal alkynes present in drug precursors can be obtained using this protocol in good yields. The mechanism is proposed on the basis of control experiments.
Asunto(s)
Yoduros , Fosfinas , Alquinos , Catálisis , Hidrocarburos Fluorados , Ligandos , Paladio , SilanosRESUMEN
The synthesis of isomerically pure olefins containing all-carbon quaternary centers is a challenging issue. Herein, we developed an efficient protocol for the synthesis of (Z)-olefins (27 examples, yield up to 97%, Z/E up to 99/1) and (E)-olefins (16 examples, yield up to 94%, E/Z up to 99/1) containing all-carbon quaternary centers. This protocol is adopted for the copper-catalyzed regioselective C-H alkenylation of the tertiary C(sp3)-H bond of 3-aryl benzofuran-2(3H)-ones with alkyne and alkenes. A diverse range of functional groups in the substrates is well-tolerated, such as F, Cl, Br, Me, OMe, ester, CF3, etc. A gram scale experiment was performed in good yield, and the radical mechanisms are also proposed based on the control experiments.
RESUMEN
Phosphanylnaphtho[2,1-d]oxazoles were synthesized successfully through one-pot phosphonation of naphthoquinone with diaryl(alkyl)phosphine oxides and Cu-catalyzed oxidative condensation with imines, followed by methylation and reduction. Upon applying 4-phosphanylnaphtho[2,1-d]oxazole as a P,N-chelating ligand, Pd-catalyzed C-N formation of amines or nitrobenzene as well as Ni-catalyzed C-C formation and the synthesis of quinoline proceeded successfully. The reaction was facilely scaled up to give N-benzylaniline 15a in a gram scale synthesis. This research provided a facile and convenient protocol to synthesize phosphanylnaphtho[2,1-d]oxazoles, which could be applied as an efficient P,N-ligand in transition-metal-catalyzed C-N and C-C formation to produce the desired products in high yields with wide functional group tolerance under small catalyst loading, solvent-free conditions in many reactions.
Asunto(s)
Iminas , Oxazoles , Aminas , Catálisis , LigandosRESUMEN
A phage PEf771 that specifically infects and lyses pathogenic Enterococcus faecalis YN771 in patients with refractory periapical periodontitis was used to investigate resistance against E. faecalis infection in vitro and in vivo. PEf771 completely lysed YN771 within 3 h, with a multiplicity of infection of 1. Compared with ten routinely used clinical antibiotics, PEf771 demonstrated the highest bacteriostatic effect within 72 h. The antibacterial effect of PEf771 on extracted teeth within 72 h was better than that of conventional root canal disinfectants such as camphorated phenol, formaldehyde cresol solution, and Ca(OH)2 (P < 0.05) within 72 h. Using E. faecalis, intraperitoneal and periapical infection models were established using Sprague Dawley (SD) rats. The results showed that all SD rats inoculated with 9.6 × 1011 CFU/mL E. faecalis YN771 or 2.9 × 1011 CFU/mL E. faecalis RYN771 died within 8 h. Additionally, all SD rats inoculated with YN771 and treated with antibiotics died within 72 h. Although SD rats inoculated with RYN771 and treated with antibiotics survived for 72 h, the pathological anatomy of these rats showed purulent discharge, numerous pus and blood-filled ascites, and extensive liver abscesses. Notably, YN771 rats treated with PEf771 and RYN771 rats treated with RPEf771 survived for 72 h, and their pathological anatomy showed that the liver, kidneys, intestine, and mesenteries were normal. Computed tomography analysis of SD rats infected with periapical periodontitis showed pathological changes in experimental teeth inoculated with YN771, despite undergoing a normal root canal treatment. Contrastingly, none of the experimental teeth exhibited root periapical inflammation following PEf771 treatment. Hematoxylin and eosin staining revealed a gap between the periodontal ligament and the cementum of experimental teeth, whereas PEf771-treated teeth exhibited normal results. These findings suggested that phage therapy using PEf771 might effectively prevent E. faecalis infection after root canal treatment.Key points⢠Compared with common clinical antibiotics, PEf771 showed the highest antibacterial.⢠The liver, kidney, intestine, and mesentery of SD rats treated with PEf771 were normal.⢠Phage therapy can effectively prevent E. faecalis YN771 and RYN771 infection.
Asunto(s)
Periodontitis Periapical , Terapia de Fagos , Animales , Enterococcus faecalis , Humanos , Periodontitis Periapical/microbiología , Periodontitis Periapical/terapia , Ratas , Ratas Sprague-Dawley , Tratamiento del Conducto Radicular/métodosRESUMEN
Diabetic wounds are a protracted complication of diabetes mainly characterised by chronic inflammation, obstruction of epithelialization, damaged blood vessels and collagen production (maturation), as well as neuropathy. As a non-coding RNA (ncRNA) that lack coding potential, long non-coding RNAs (lncRNAs) have recently been reported to play a salient role in diabetic wound healing. Here, this review summarises the roles of lncRNAs in the pathology and treatments of diabetic wounds, providing references for its potential clinical diagnostic criteria or therapeutic targets in the future.
Asunto(s)
Diabetes Mellitus , ARN Largo no Codificante , Colágeno , Humanos , ARN Largo no Codificante/genética , Repitelización , Cicatrización de Heridas/genéticaRESUMEN
CCAR2 plays a pivotal role in the regulation of the DNA damage response and cancer progression. Although aberrant expression of CCAR2 has been reported in several types of cancer, its biological function and molecular mechanism in osteosarcoma (OS) have not yet been fully elucidated. Here, we show that silence of CCAR2 prevented the malignant phenotype of OS cell in vitro and decreased tumor growth in nude mice. By analyzing the transcriptomic profile of CCAR2 knockdown U2OS cells, we identified secreted protein acidic and rich in cysteine (SPARC) is tightly regulated by CCAR2. Mechanically, we found that SPARC is transcriptionally regulated by Wnt/ß-catenin signaling, and CCAR2 acts as a co-activator of Wnt/ß-catenin signaling to regulate the expression of SPARC in OS cells. Additionally, SPARC knockdown largely eliminated the malignant phenotype induced by CCAR2 overexpression and forced expression of SPARC promoted the malignant phenotype of CCAR2-depleted cells. In conclusion, our results suggest that CCAR2 exerted oncogenic roles in OS cells mainly via up-regulating SPARC expression and targeting the CCAR2-SPARC axis might have promising application prospect for the treatment of osteosarcoma.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Neoplasias Óseas/genética , Osteonectina/genética , Osteosarcoma/genética , Vía de Señalización Wnt , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Neoplasias Óseas/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Desnudos , Osteonectina/metabolismo , Osteosarcoma/metabolismo , Activación TranscripcionalRESUMEN
Metal-organic framework (MOF) is an ideal precursor/template for porous carbon, and its active components are uniformly doped, which can be used in energy storage and catalytic conversion fields. Metal-organic framework PCN-224 with carboxylporphyrin as the ligand was synthesized, and then Zn2+ and Co2+ ions were coordinated in the center of the porphyrin ring by post-modification. Here, PCN-224-ZnCo with different ratios of bimetallic Zn2+ /Co2+ ions were used as the precursor, and the metal-nitrogen-carbon(M-N-C) material of PCN-224-ZnCo-950 was obtained by pyrolyzing the precursor at 950 °C in Ar. Because Zn is easy to volatilize at 950 °C, the formed M-N-C materials can reflect different Co contents and different basic site concentrations. The formed material still maintains the original basic framework. With the increase of Zn2+ /Co2+ ratio in precursor, the concentration of N-containing alkaline sites in pyrolysis products gradually increase. Compared with the precursor, PCN-224-ZnCo1 -950 with Zn2+ /Co2+ =1 : 1 has greatly improved basicity and suitable acidic/ alkaline site concentration. It can be efficiently used to carbon dioxide absorption and catalyze the cycloaddition of CO2 with epoxide. More importantly, the current method of adjusting the acidic/basic sites in M-N-C materials through volatilization of volatile metals can provide an effective strategy for adjusting the catalysis of MOF derivatives with porphyrin structure.
RESUMEN
Structure heterogeneity and host nucleic acids contamination are two major problems for virus-like particles (VLPs) produced by various host cells. In this study, an in vitro optimized disassembly-purification-reassembly process was developed to obtain uniform and nucleic acid free hepatitis B core (HBc) based VLPs from E. coli fermentation. The process started with ammonium sulfate precipitation of all heterogeneous HBc structures after cell disintegration. Then, dissolution and disassembly of pellets into basic subunits were carried out under the optimized disassembly condition. All contaminants, including host nucleic acids and proteins, were efficiently removed with affinity chromatography. The purified subunits reassembled into VLPs by final removal of the chaotropic agent. Two uniform and nucleic acid free HBc-based VLPs, truncated HBc149 and chimeric HBc183-MAGE3 I, were successfully prepared. It was found that disassembly degree of HBc-based VLPs had a great influence on the protein yield, nucleic acid removal and reassembly efficiency. 4 M urea was optimal because lower concentration would not disassemble the particles completely while higher concentration would further denature the subunits into disordered aggregate and could not be purified and reassembled efficiently. For removal of strong binding nucleic acids such as in the case of HBc183-MAGE3 I, benzonase nuclease was added to the disassembly buffer before affinity purification. Through the optimized downstream process, uniform and nucleic acid free HBc149 VLPs and HBc183-MAGE3 I VLPs were obtained with purities above 90% and yields of 55.2 and 43.0 mg/L, respectively. This study would be a reference for efficient preparation of other VLPs.