Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Haematologica ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38867582

RESUMEN

Infants less than 1 year old diagnosed with KMT2A-rearranged (KMT2A-r) acute lymphoblastic leukemia (ALL) are at high risk of remission failure, relapse, and death due to leukemia, despite intensive therapies. Infant KMT2A-r ALL blasts are characterized by DNA hypermethylation. Epigenetic priming with DNA methyltransferase inhibitors increases the cytotoxicity of chemotherapy in preclinical studies. The Children's Oncology Group trial AALL15P1 tested the safety and tolerability of five days of azacitidine immediately prior to the start of chemotherapy on day six, in four post-induction chemotherapy courses for infants with newly diagnosed KMT2A-r ALL. The treatment was welltolerated, with only two of 31 evaluable patients (6.5%) experiencing dose-limiting toxicity. Whole genome bisulfite sequencing of peripheral blood mononuclear cells (PBMCs) demonstrated decreased DNA methylation in 87% of samples tested following five days of azacitidine. Event-free survival was similar to prior studies of newly diagnosed infant ALL. Azacitidine is safe and results in decreased DNA methylation of PBMCs in infants with KMT2A-r ALL, but the incorporation of azacitidine to enhance cytotoxicity did not impact survival. Clinicaltrials.gov identifier: NCT02828358.

2.
J Oral Pathol Med ; 52(3): 263-270, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36715450

RESUMEN

OBJECTIVE: Ameloblastomas are a group of relatively common odontogenic tumors that frequently originate from the dental epithelium. These tumors are aggressive in nature and present as slow-growing painless cortical expansion of the jaw. Histologically, the follicular and plexiform subtypes constitute two-thirds of solid/multicystic ameloblastomas. The objective of this study was to understand the genetic architecture of follicular and plexiform ameloblastomas using deep whole-exome sequencing. METHODS: Archived formalin-fixed paraffin-embedded tissue blocks of follicular (n = 4) and plexiform (n = 6) ameloblastomas were retrieved and genomic DNAs were isolated from the tumor tissue dissected from the formalin-fixed paraffin-embedded block. The exomes were enriched using the Integrated DNA Technologies Exome Research Panel (IDT, Coralville, IA) and paired-end sequencing was completed on an Illumina NovaSeq 6000 with an average output of 20 GB of data resulting in a mean coverage of 400×. Variant analysis was completed using custom-developed software: Rapid Understanding of Nucleotide variant Effect Software and variant integration and knowledge interpretation in genomes. RESULTS: Our analyses focused on examining somatic variants (gnomAD minor allele frequency ≤1%) in genes found on an Food and Drug Administration -approved clinical cancer sequencing panel (FoundationOne®CDx). In follicular tumors, variants (>20% of the reads) were identified in BRAF, KMT2D, and ABL1 genes. In plexiform tumors, variants (>20% of the reads) were identified in ALK, BRAF, KRAS, KMT2D, SMO, KMT2A, and BRCA2 genes. Enrichment analysis showed a significant role of DNA repair genes in the development of these tumors. CONCLUSION: The variants identified in follicular and plexiform ameloblastomas were enriched in DNA-repair genes. The observed genetic heterogeneity in these ameloblastomas may contribute to the aggressive nature and recurrence risk of these tumors.


Asunto(s)
Ameloblastoma , Tumores Odontogénicos , Humanos , Ameloblastoma/genética , Ameloblastoma/patología , Proteínas Proto-Oncogénicas B-raf/genética , Heterogeneidad Genética , Tumores Odontogénicos/genética , Formaldehído
3.
Clin Chem ; 68(9): 1177-1183, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35869940

RESUMEN

BACKGROUND: Laboratories utilizing next-generation sequencing align sequence data to a standardized human reference genome (HRG). Several updated versions, or builds, have been released since the original HRG in 2001, including the Genome Reference Consortium Human Build 38 (GRCh38) in 2013. However, most clinical laboratories still use GRCh37, which was released in 2009. We report our laboratory's clinical validation of GRCh38. METHODS: Migration to GRCh38 was validated by comparing the coordinates (lifting over) of 9443 internally curated variants from GRCh37 to GRCh38, globally comparing protein coding sequence variants aligned with GRCh37 vs GRCh38 from 917 exomes, assessing genes with known discrepancies, comparing coverage differences, and establishing the analytic sensitivity and specificity of variant detection using Genome in a Bottle data. RESULTS: Eight discrepancies, due to strand swap or reference base, were observed. Three clinically relevant variants had the GRCh37 alternate allele as the reference allele in GRCh38. A comparison of 88 295 calls between builds identified 8 disease-associated genes with sequence differences: ABO, BNC2, KIZ, NEFL, NR2E3, PTPRQ, SHANK2, and SRD5A2. Discrepancies in coding regions in GRCh37 were resolved in GRCh38. CONCLUSIONS: There were a small number of clinically significant changes between the 2 genome builds. GRCh38 provided improved detection of nucleotide changes due to the resolution of discrepancies present in GRCh37. Implementation of GRCh38 results in more accurate and consistent reporting.


Asunto(s)
Genoma Humano , Laboratorios , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa , Alelos , Proteínas de Ciclo Celular , Exoma , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Proteínas de la Membrana , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores
4.
Proc Natl Acad Sci U S A ; 109(19): 7362-7, 2012 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-22529382

RESUMEN

In the preimplantation mouse embryo, TEAD4 is critical to establishing the trophectoderm (TE)-specific transcriptional program and segregating TE from the inner cell mass (ICM). However, TEAD4 is expressed in the TE and the ICM. Thus, differential function of TEAD4 rather than expression itself regulates specification of the first two cell lineages. We used ChIP sequencing to define genomewide TEAD4 target genes and asked how transcription of TEAD4 target genes is specifically maintained in the TE. Our analyses revealed an evolutionarily conserved mechanism, in which lack of nuclear localization of TEAD4 impairs the TE-specific transcriptional program in inner blastomeres, thereby allowing their maturation toward the ICM lineage. Restoration of TEAD4 nuclear localization maintains the TE-specific transcriptional program in the inner blastomeres and prevents segregation of the TE and ICM lineages and blastocyst formation. We propose that altered subcellular localization of TEAD4 in blastomeres dictates first mammalian cell fate specification.


Asunto(s)
Linaje de la Célula , Proteínas de Unión al ADN/metabolismo , Proteínas Musculares/metabolismo , Factores de Transcripción/metabolismo , Animales , Blastocisto/citología , Blastocisto/metabolismo , Masa Celular Interna del Blastocisto/citología , Masa Celular Interna del Blastocisto/metabolismo , Blastómeros/citología , Blastómeros/metabolismo , Western Blotting , Factor de Transcripción CDX2 , Bovinos , Núcleo Celular/metabolismo , Células Cultivadas , Proteínas de Unión al ADN/genética , Células Madre Embrionarias/metabolismo , Factor de Transcripción GATA3/genética , Factor de Transcripción GATA3/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Macaca mulatta , Ratones , Ratones Transgénicos , Proteínas Musculares/genética , Interferencia de ARN , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción de Dominio TEA , Factores de Transcripción/genética
5.
Hepatology ; 57(6): 2480-90, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23315968

RESUMEN

Hepatocyte nuclear factor 4 alpha (HNF4α), the master regulator of hepatocyte differentiation, has been recently shown to inhibit hepatocyte proliferation by way of unknown mechanisms. We investigated the mechanisms of HNF4α-induced inhibition of hepatocyte proliferation using a novel tamoxifen (TAM)-inducible, hepatocyte-specific HNF4α knockdown mouse model. Hepatocyte-specific deletion of HNF4α in adult mice resulted in increased hepatocyte proliferation, with a significant increase in liver-to-body-weight ratio. We determined global gene expression changes using Illumina HiSeq-based RNA sequencing, which revealed that a significant number of up-regulated genes following deletion of HNF4α were associated with cancer pathogenesis, cell cycle control, and cell proliferation. The pathway analysis further revealed that c-Myc-regulated gene expression network was highly activated following HNF4α deletion. To determine whether deletion of HNF4α affects cancer pathogenesis, HNF4α knockdown was induced in mice treated with the known hepatic carcinogen diethylnitrosamine (DEN). Deletion of HNF4α significantly increased the number and size of DEN-induced hepatic tumors. Pathological analysis revealed that tumors in HNF4α-deleted mice were well-differentiated hepatocellular carcinoma (HCC) and mixed HCC-cholangiocarcinoma. Analysis of tumors and surrounding normal liver tissue in DEN-treated HNF4α knockout mice showed significant induction in c-Myc expression. Taken together, deletion of HNF4α in adult hepatocytes results in increased hepatocyte proliferation and promotion of DEN-induced hepatic tumors secondary to aberrant c-Myc activation.


Asunto(s)
Carcinoma Hepatocelular/etiología , Factor Nuclear 4 del Hepatocito/fisiología , Hepatocitos/fisiología , Neoplasias Hepáticas Experimentales/etiología , Animales , Proliferación Celular , Dietilnitrosamina , Progresión de la Enfermedad , Eliminación de Gen , Perfilación de la Expresión Génica , Homeostasis , Masculino , Ratones , Ratones Noqueados , Análisis de Secuencia de ARN , Tamoxifeno , Transcriptoma
8.
medRxiv ; 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38765974

RESUMEN

HiC sequencing is a DNA-based next-generation sequencing method that preserves the 3D conformation of the genome and has shown promise in detecting genomic rearrangements in translational research studies. To evaluate HiC as a potential clinical diagnostic platform, analytical concordance with routine laboratory testing was assessed using primary pediatric leukemia and sarcoma specimens previously positive for clinically significant genomic rearrangements. Archived specimen types tested included viable and nonviable frozen leukemic cells, as well as formalin-fixed paraffin-embedded (FFPE) tumor tissues. Initially, pediatric acute myeloid leukemia (AML) and alveolar rhabdomyosarcoma (A-RMS) specimens with known genomic rearrangements were subjected to HiC analysis to assess analytical concordance. Subsequently, a discovery cohort consisting of AML and acute lymphoblastic leukemia (ALL) cases with no known genomic rearrangements based on prior clinical diagnostic testing were evaluated to determine whether HiC could detect rearrangements. Using a standard sequencing depth of 50 million raw read-pairs per sample, or approximately 5X raw genomic coverage, 100% concordance was observed between HiC and previous clinical cytogenetic and molecular testing. In the discovery cohort, a clinically relevant gene fusion was detected in 45% of leukemia cases (5/11). This study demonstrates the value of HiC sequencing to medical diagnostic testing as it identified several clinically significant rearrangements, including those that might have been missed by current clinical testing workflows. Key points: HiC sequencing is a DNA-based next-generation sequencing method that preserves the 3D conformation of the genome, facilitating detection of genomic rearrangements.HiC was 100% concordant with clinical diagnostic testing workflows for detecting clinically significant genomic rearrangements in pediatric leukemia and rhabdomyosarcoma specimens.HiC detected clinically significant genomic rearrangements not previously detected by prior clinical cytogenetic and molecular testing.HiC performed well with archived non-viable and viable frozen leukemic cell samples, as well as archived formalin-fixed paraffin-embedded tumor tissue specimens.

9.
medRxiv ; 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38585974

RESUMEN

Most current studies rely on short-read sequencing to detect somatic structural variation (SV) in cancer genomes. Long-read sequencing offers the advantage of better mappability and long-range phasing, which results in substantial improvements in germline SV detection. However, current long-read SV detection methods do not generalize well to the analysis of somatic SVs in tumor genomes with complex rearrangements, heterogeneity, and aneuploidy. Here, we present Severus: a method for the accurate detection of different types of somatic SVs using a phased breakpoint graph approach. To benchmark various short- and long-read SV detection methods, we sequenced five tumor/normal cell line pairs with Illumina, Nanopore, and PacBio sequencing platforms; on this benchmark Severus showed the highest F1 scores (harmonic mean of the precision and recall) as compared to long-read and short-read methods. We then applied Severus to three clinical cases of pediatric cancer, demonstrating concordance with known genetic findings as well as revealing clinically relevant cryptic rearrangements missed by standard genomic panels.

10.
Drug Metab Dispos ; 41(4): 844-57, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23382457

RESUMEN

Phase II conjugating enzymes play key roles in the metabolism of xenobiotics. In the present study, RNA sequencing was used to elucidate hepatic ontogeny and tissue distribution of mRNA expression of all major known Phase II enzymes, including enzymes involved in glucuronidation, sulfation, glutathione conjugation, acetylation, methylation, and amino acid conjugation, as well as enzymes for the synthesis of Phase II cosubstrates, in male C57BL/6J mice. Livers from male C57BL/6J mice were collected at 12 ages from prenatal to adulthood. Many of these Phase II enzymes were expressed at much higher levels in adult livers than in perinatal livers, such as Ugt1a6b, -2a3, -2b1, -2b5, -2b36, -3a1, and -3a2; Gsta1, -m1, -p1, -p2, and -z1; mGst1; Nat8; Comt; Nnmt; Baat; Ugdh; and Gclc. In contrast, hepatic mRNA expression of a few Phase II enzymes decreased during postnatal liver development, such as mGst2, mGst3, Gclm, and Mat2a. Hepatic expression of certain Phase II enzymes peaked during the adolescent stage, such as Ugt1a1, Sult1a1, Sult1c2, Sult1d1, Sult2as, Sult5a1, Tpmt, Glyat, Ugp2, and Mat1a. In adult mice, the total transcripts for Phase II enzymes were comparable in liver, kidney, and small intestine; however, individual Phase II enzymes displayed marked tissue specificity among the three organs. In conclusion, this study unveils for the first time developmental changes in mRNA abundance of all major known Phase II enzymes in mouse liver, as well as their tissue-specific expression in key drug-metabolizing organs. The age- and tissue-specific expression of Phase II enzymes indicate that the detoxification of xenobiotics is highly regulated by age and cell type.


Asunto(s)
Intestino Delgado/enzimología , Riñón/enzimología , Hígado/enzimología , Fase II de la Desintoxicación Metabólica/genética , Análisis de Secuencia de ARN , Envejecimiento/genética , Animales , Perfilación de la Expresión Génica , Regulación Enzimológica de la Expresión Génica/genética , Intestino Delgado/crecimiento & desarrollo , Riñón/crecimiento & desarrollo , Hígado/crecimiento & desarrollo , Masculino , Ratones , Especificidad de Órganos
11.
Drug Metab Dispos ; 41(12): 2175-86, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24080161

RESUMEN

Phase-I drug metabolizing enzymes catalyze reactions of hydrolysis, reduction, and oxidation of drugs and play a critical role in drug metabolism. However, the functions of most phase-I enzymes are not mature at birth, which markedly affects drug metabolism in newborns. Therefore, characterization of the expression profiles of phase-I enzymes and the underlying regulatory mechanisms during liver maturation is needed for better estimation of using drugs in pediatric patients. The mouse is an animal model widely used for studying the mechanisms in the regulation of developmental expression of phase-I genes. Therefore, we applied RNA sequencing to provide a "true quantification" of the mRNA expression of phase-I genes in the mouse liver during development. Liver samples of male C57BL/6 mice at 12 different ages from prenatal to adulthood were used for defining the ontogenic mRNA profiles of phase-I families, including hydrolysis: carboxylesterase (Ces), paraoxonase (Pon), and epoxide hydrolase (Ephx); reduction: aldo-keto reductase (Akr), quinone oxidoreductase (Nqo), and dihydropyrimidine dehydrogenase (Dpyd); and oxidation: alcohol dehydrogenase (Adh), aldehyde dehydrogenase (Aldh), flavin monooxygenases (Fmo), molybdenum hydroxylase (Aox and Xdh), cytochrome P450 (P450), and cytochrome P450 oxidoreductase (Por). Two rapidly increasing stages of total phase-I gene expression after birth reflect functional transition of the liver during development. Diverse expression patterns were identified, and some large gene families contained the mRNA of genes that are enriched at different stages of development. Our study reveals the mRNA abundance of phase-I genes in the mouse liver during development and provides a valuable foundation for mechanistic studies in the future.


Asunto(s)
Hígado/enzimología , Fase I de la Desintoxicación Metabólica/genética , ARN Mensajero/genética , Animales , Expresión Génica/genética , Hidrólisis , Masculino , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia de ARN/métodos
12.
Cancer Genet ; 274-275: 10-20, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36917897

RESUMEN

Though rare, pediatric high-grade gliomas (pHGG) are a leading cause of cancer-related mortality in children. We wanted to determine whether our currently available clinical laboratory methods could better define diagnosis for pHGG that had been archived at our institution for the past 20 years (1998 to 2017). We investigated 33 formalin-fixed paraffin-embedded pHGG using ThermoFisher Oncoscan SNP microarray with somatic mutation analysis, Sanger sequencing, and whole genome sequencing. These data were correlated with historical histopathological, chromosomal, clinical, and radiological data. Tumors were subsequently classified according to the 2021 WHO Classification of Paediatric CNS Tumours. All 33 tumors were found to have genetic aberrations that placed them within a 2021 WHO subtype and/or provided prognostic information; 6 tumors were upgraded from WHO CNS grade 3 to grade 4. New pHGG genetic features were found including two small cell glioblastomas with H3 G34 mutations not previously described; one tumor with STRN-NTRK2 fusion; and a congenital diffuse leptomeningeal glioneuronal tumor without a chromosomal 1p deletion but with KIAA1549-BRAF fusion. Overall, the combination of laboratory methods yielded key information for tumor classification. Thus, even small studies of these uncommon tumor types may yield new genetic features and possible new subtypes that warrant future investigations.


Asunto(s)
Neoplasias Encefálicas , Neoplasias del Sistema Nervioso Central , Glioma , Niño , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Glioma/genética , Glioma/patología , Neoplasias del Sistema Nervioso Central/genética , Mutación/genética , Organización Mundial de la Salud
13.
Nat Commun ; 14(1): 3090, 2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-37248219

RESUMEN

Long-read HiFi genome sequencing allows for accurate detection and direct phasing of single nucleotide variants, indels, and structural variants. Recent algorithmic development enables simultaneous detection of CpG methylation for analysis of regulatory element activity directly in HiFi reads. We present a comprehensive haplotype resolved 5-base HiFi genome sequencing dataset from a rare disease cohort of 276 samples in 152 families to identify rare (~0.5%) hypermethylation events. We find that 80% of these events are allele-specific and predicted to cause loss of regulatory element activity. We demonstrate heritability of extreme hypermethylation including rare cis variants associated with short (~200 bp) and large hypermethylation events (>1 kb), respectively. We identify repeat expansions in proximal promoters predicting allelic gene silencing via hypermethylation and demonstrate allelic transcriptional events downstream. On average 30-40 rare hypermethylation tiles overlap rare disease genes per patient, providing indications for variation prioritization including a previously undiagnosed pathogenic allele in DIP2B causing global developmental delay. We propose that use of HiFi genome sequencing in unsolved rare disease cases will allow detection of unconventional diseases alleles due to loss of regulatory element activity.


Asunto(s)
Metilación de ADN , Enfermedades Raras , Humanos , Haplotipos , Enfermedades Raras/genética , Metilación de ADN/genética , Análisis de Secuencia de ADN , Secuencia de Bases , Secuenciación de Nucleótidos de Alto Rendimiento , Proteínas del Tejido Nervioso/genética
14.
Drug Metab Dispos ; 40(6): 1198-209, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22434873

RESUMEN

Cytochromes P450 (P450s) are a superfamily of enzymes that have critical functions in liver to catalyze the biotransformation of numerous drugs. However, the functions of most P450s are not mature at birth, which can markedly affect the metabolism of drugs in newborns. Therefore, characterization of the developmental profiles and regulatory mechanisms of P450 expression is needed for more rational drug therapy of pediatric patients. An animal model is indispensable for studying the mechanisms of postnatal development of the P450s. Hence we used RNA sequencing (RNA-Seq) to provide a "true quantification" of mRNA expression of all P450s in mouse liver during development. Liver samples of male C57BL/6 mice at 12 different ages from prenatal to adulthood were used. Total mRNAs of the 103 mouse P450s displayed two rapid increasing stages after birth, reflecting critical functional transition of liver during development. Four ontogenic expression patterns were identified among the 71 significantly expressed P450s, which categorized genes into neonatal-, adolescent-, adolescent/adult-, and adult-enriched groups. The 10 most highly expressed subfamilies of mouse P450s in livers of adult mice were CYP2E, -2C, -2D, -3A, -4A, -2F, -2A, -1A, -4F, and -2B, which showed diverse expression profiles during development. The expression patterns of multiple members within a P450 subfamily were often classified to different groups. RNA-Seq also enabled the quantification of known transcript variants of CYP2C44, CYP2C50, CYP2D22, CYP3A25, and CYP26B1 and identification of novel transcripts for CYP2B10, CYP2D26, and CYP3A13. In conclusion, this study reveals the mRNA abundance of all the P450s in mouse liver during development and provides a foundation for mechanistic studies in the future.


Asunto(s)
Empalme Alternativo/genética , Sistema Enzimático del Citocromo P-450/biosíntesis , Hígado/crecimiento & desarrollo , ARN Mensajero/biosíntesis , Análisis de Secuencia de ARN/métodos , Transcripción Genética/fisiología , Animales , Animales Recién Nacidos , Secuencia de Bases , Sistema Enzimático del Citocromo P-450/genética , Femenino , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica , Hígado/embriología , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Embarazo , Empalme del ARN/genética , ARN Mensajero/genética
15.
Nat Biotechnol ; 40(5): 672-680, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35132260

RESUMEN

The repetitive nature and complexity of some medically relevant genes poses a challenge for their accurate analysis in a clinical setting. The Genome in a Bottle Consortium has provided variant benchmark sets, but these exclude nearly 400 medically relevant genes due to their repetitiveness or polymorphic complexity. Here, we characterize 273 of these 395 challenging autosomal genes using a haplotype-resolved whole-genome assembly. This curated benchmark reports over 17,000 single-nucleotide variations, 3,600 insertions and deletions and 200 structural variations each for human genome reference GRCh37 and GRCh38 across HG002. We show that false duplications in either GRCh37 or GRCh38 result in reference-specific, missed variants for short- and long-read technologies in medically relevant genes, including CBS, CRYAA and KCNE1. When masking these false duplications, variant recall can improve from 8% to 100%. Forming benchmarks from a haplotype-resolved whole-genome assembly may become a prototype for future benchmarks covering the whole genome.


Asunto(s)
Genoma Humano , Genoma Humano/genética , Haplotipos/genética , Humanos , Análisis de Secuencia de ADN
16.
Cell Genom ; 2(5)2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-36452119

RESUMEN

Genome in a Bottle benchmarks are widely used to help validate clinical sequencing pipelines and develop variant calling and sequencing methods. Here we use accurate linked and long reads to expand benchmarks in 7 samples to include difficult-to-map regions and segmental duplications that are challenging for short reads. These benchmarks add more than 300,000 SNVs and 50,000 insertions or deletions (indels) and include 16% more exonic variants, many in challenging, clinically relevant genes not covered previously, such as PMS2. For HG002, we include 92% of the autosomal GRCh38 assembly while excluding regions problematic for benchmarking small variants, such as copy number variants, that should not have been in the previous version, which included 85% of GRCh38. It identifies eight times more false negatives in a short read variant call set relative to our previous benchmark. We demonstrate that this benchmark reliably identifies false positives and false negatives across technologies, enabling ongoing methods development.

17.
J Mol Diagn ; 23(5): 651-657, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33631350

RESUMEN

The most recent build of the human reference genome, GRCh38, was released in 2013. However, many laboratories performing next-generation sequencing (NGS) continue to align to GRCh37. Our aim was to assess the number of clinical diagnostic laboratories that have migrated to GRCh38 and discern factors impeding migration for those still using GRCh37. A brief, five-question survey was electronically administered to 71 clinical laboratories offering constitutional NGS-based testing and analyzed categorically. Twenty-eight responses meeting inclusion criteria were collected from 24 academic and four commercial diagnostic laboratories. Most of these (14; 50%) reported volumes of <500 NGS-based tests in 2019. Only two respondents (7%) had already migrated entirely to GRCh38; most laboratories (15; 54%) had no plans to migrate. The two prevailing reasons for not yet migrating were as follows: laboratories did not feel the benefits outweighed the time and monetary costs (14; 50%); and laboratories had insufficient staff to facilitate the migration (12; 43%). These data, although limited, suggest most clinical molecular laboratories are reluctant to migrate to GRCh38, and there appear to be multiple obstacles to overcome before GRCh38 is widely adopted.


Asunto(s)
Genoma Humano , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Laboratorios/normas , Anotación de Secuencia Molecular , Análisis de Secuencia de ADN/normas , Exactitud de los Datos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Valores de Referencia , Análisis de Secuencia de ADN/métodos
18.
Nat Commun ; 11(1): 4794, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32963235

RESUMEN

Most human genomes are characterized by aligning individual reads to the reference genome, but accurate long reads and linked reads now enable us to construct accurate, phased de novo assemblies. We focus on a medically important, highly variable, 5 million base-pair (bp) region where diploid assembly is particularly useful - the Major Histocompatibility Complex (MHC). Here, we develop a human genome benchmark derived from a diploid assembly for the openly-consented Genome in a Bottle sample HG002. We assemble a single contig for each haplotype, align them to the reference, call phased small and structural variants, and define a small variant benchmark for the MHC, covering 94% of the MHC and 22368 variants smaller than 50 bp, 49% more variants than a mapping-based benchmark. This benchmark reliably identifies errors in mapping-based callsets, and enables performance assessment in regions with much denser, complex variation than regions covered by previous benchmarks.


Asunto(s)
Diploidia , Complejo Mayor de Histocompatibilidad/genética , Benchmarking , Línea Celular , Variación Genética , Genoma Humano , Haplotipos , Humanos
19.
Clin Cancer Res ; 26(10): 2297-2307, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-31969338

RESUMEN

PURPOSE: Treatment failure from drug resistance is the primary reason for relapse in acute lymphoblastic leukemia (ALL). Improving outcomes by targeting mechanisms of drug resistance is a potential solution. PATIENTS AND METHODS: We report results investigating the epigenetic modulators decitabine and vorinostat with vincristine, dexamethasone, mitoxantrone, and PEG-asparaginase for pediatric patients with relapsed or refractory B-cell ALL (B-ALL). Twenty-three patients, median age 12 years (range, 1-21) were treated in this trial. RESULTS: The most common grade 3-4 toxicities included hypokalemia (65%), anemia (78%), febrile neutropenia (57%), hypophosphatemia (43%), leukopenia (61%), hyperbilirubinemia (39%), thrombocytopenia (87%), neutropenia (91%), and hypocalcemia (39%). Three subjects experienced dose-limiting toxicities, which included cholestasis, steatosis, and hyperbilirubinemia (n = 1); seizure, somnolence, and delirium (n = 1); and pneumonitis, hypoxia, and hyperbilirubinemia (n = 1). Infectious complications were common with 17 of 23 (74%) subjects experiencing grade ≥3 infections including invasive fungal infections in 35% (8/23). Nine subjects (39%) achieved a complete response (CR + CR without platelet recovery + CR without neutrophil recovery) and five had stable disease (22%). Nine (39%) subjects were not evaluable for response, primarily due to treatment-related toxicities. Correlative pharmacodynamics demonstrated potent in vivo modulation of epigenetic marks, and modulation of biologic pathways associated with functional antileukemic effects. CONCLUSIONS: Despite encouraging response rates and pharmacodynamics, the combination of decitabine and vorinostat on this intensive chemotherapy backbone was determined not feasible in B-ALL due to the high incidence of significant infectious toxicities. This study is registered at http://www.clinicaltrials.gov as NCT01483690.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Recurrencia Local de Neoplasia/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Adolescente , Adulto , Asparaginasa/administración & dosificación , Bortezomib/administración & dosificación , Niño , Preescolar , Decitabina/administración & dosificación , Dexametasona/administración & dosificación , Doxorrubicina/administración & dosificación , Femenino , Estudios de Seguimiento , Humanos , Lactante , Masculino , Mitoxantrona/administración & dosificación , Recurrencia Local de Neoplasia/patología , Proyectos Piloto , Polietilenglicoles/administración & dosificación , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Pronóstico , Terapia Recuperativa/métodos , Tasa de Supervivencia , Vincristina/administración & dosificación , Vorinostat/administración & dosificación , Adulto Joven
20.
NPJ Genom Med ; 1: 16026, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-29263817

RESUMEN

Optimal management of acutely ill infants with monogenetic diseases requires rapid identification of causative haplotypes. Whole-genome sequencing (WGS) has been shown to identify pathogenic nucleotide variants in such infants. Deletion structural variants (DSVs, >50 nt) are implicated in many genetic diseases, and tools have been designed to identify DSVs using short-read WGS. Optimisation and integration of these tools into a WGS pipeline could improve diagnostic sensitivity and specificity of WGS. In addition, it may improve turnaround time when compared with current CNV assays, enhancing utility in acute settings. Here we describe DSV detection methods for use in WGS for rapid diagnosis in acutely ill infants: SKALD (Screening Konsensus and Annotation of Large Deletions) combines calls from two tools (Breakdancer and GenomeStrip) with calibrated filters and clinical interpretation rules. In four WGS runs, the average analytic precision (positive predictive value) of SKALD was 78%, and recall (sensitivity) was 27%, when compared with validated reference DSV calls. When retrospectively applied to a cohort of 36 families with acutely ill infants SKALD identified causative DSVs in two. The first was heterozygous deletion of exons 1-3 of MMP21 in trans with a heterozygous frame-shift deletion in two siblings with transposition of the great arteries and heterotaxy. In a newborn female with dysmorphic features, ventricular septal defect and persistent pulmonary hypertension, SKALD identified the breakpoints of a heterozygous, de novo 1p36.32p36.13 deletion. In summary, consensus DSV calling, implemented in an 8-h computational pipeline with parameterised filtering, has the potential to increase the diagnostic yield of WGS in acutely ill neonates and discover novel disease genes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA